ﻻ يوجد ملخص باللغة العربية
In this work, we assume that the observed state $Xi(1620)$ is a $s$-wave $Lambdabar{K}$ or $Sigmabar{K}$ bound state. Based on this molecule picture, we establish the Bethe-Salpeter equations for $Xi(1620)$ in the ladder and instantaneous approximations. We solve the Bethe-Salpeter equations for the $Lambdabar{K}$ and $Sigmabar{K}$ systems numerically and find that the $Xi(1620)$ can be explained as $Lambdabar{K}$ and $Sigmabar{K}$ bound states with $J^P=1/2^-$, respectively. Then we calculate the decay widths of $Xi(1620)rightarrowXipi$ in these two different molecule pictures systems, respectively.
We study the possible bound states of the $D_1D$ system in the Bethe-Salpeter (BS) formalism in the ladder and instantaneous approximations. By solving the BS equation numerically with the kernel containing one-particle exchange diagrams and introduc
We interpret the $X_1(2900)$ as an $S$-wave $bar{D}_1K$ molecular state in the Bethe-Salpeter equation approach with the ladder and instantaneous approximations for the kernel. By solving the Bethe-Salpeter equation numerically with the kernel contai
We interpret the $B_{s1}(5778)$ as an $S$-wave $B^astbar{K}$ molecular state in the Bethe-Salpeter equation approach. In the ladder and instantaneous approximations, and with the kernel containing one-particle-exchange diagrams and introducing three
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
Using a well-established effective interaction in a rainbow-ladder truncation model of QCD, we fix the remaining model parameter to the bottomonium ground-state spectrum in a covariant Bethe-Salpeter equation approach and find surprisingly good agree