ﻻ يوجد ملخص باللغة العربية
In this paper we propose a Bayesian method for estimating architectural parameters of neural networks, namely layer size and network depth. We do this by learning concrete distributions over these parameters. Our results show that regular networks with a learnt structure can generalise better on small datasets, while fully stochastic networks can be more robust to parameter initialisation. The proposed method relies on standard neural variational learning and, unlike randomised architecture search, does not require a retraining of the model, thus keeping the computational overhead at minimum.
Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, such simplistic priors are unlikely to either accurately reflect our true beliefs about the weight distributions, or to give optimal performanc
We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-con
In federated learning problems, data is scattered across different servers and exchanging or pooling it is often impractical or prohibited. We develop a Bayesian nonparametric framework for federated learning with neural networks. Each data server is
Encoding domain knowledge into the prior over the high-dimensional weight space of a neural network is challenging but essential in applications with limited data and weak signals. Two types of domain knowledge are commonly available in scientific ap
We present a novel family of deep neural architectures, named partially exchangeable networks (PENs) that leverage probabilistic symmetries. By design, PENs are invariant to block-switch transformations, which characterize the partial exchangeability