ﻻ يوجد ملخص باللغة العربية
We study the quantum reflection of a two-dimensional disk-shaped Bose-Einstein condensate with a dark-soliton excitation by a square potential barrier. For the giving geometry, the dark-soliton initially located at the centre of the condensate cloud survive long enough for investigating the reflection process. We show the time evolution of the reflection probability with respect to various width of the barrier. The asymptotic value of the reflection probability is decreased by the existence of a dark-soliton, and is highly sensitive to the initial orientation of the dark-soliton which also affects the excitation properties during the process of condensate and barrier interaction.
We study the dynamic behavior of a Bose-Einstein condensate (BEC) containing a dark soliton separately reflected from potential drops and potential barriers. It is shown that for a rapidly varying potential and in a certain regime of incident velocit
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposi
We have measured the effect of dipole-dipole interactions on the frequency of a collective mode of a Bose-Einstein condensate. At relatively large numbers of atoms, the experimental measurements are in good agreement with zero temperature theoretical
We study experimentally and numerically the quasi-bidimensional transport of a $^{87}$Rb Bose-Einstein condensate launched with a velocity $v_0$ inside a disordered optical potential created by a speckle pattern. A time-of-flight analysis reveals a p
We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors pha