ترغب بنشر مسار تعليمي؟ اضغط هنا

Chromopolarizability of charmonium and $pipi$ final state interaction revisited

52   0   0.0 ( 0 )
 نشر من قبل Yun-Hua Chen
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Yun-Hua Chen




اسأل ChatGPT حول البحث

The chromopolarizability of a quarknonium describes the quarknoniums interaction with soft gluonic fields and can be measured in the heavy quarkonium decays. Within the framework of dispersion theory which consider the $pipi$ final state interaction (FSI) model-independently, we analyze the transition $psi^primeto J/psipi^+pi^-$ and obtain the chromopolarizability $alpha_{psi^prime psi}$ and the parameter $kappa$. It is found that the $pipi$ FSI plays an important role in extracting the chromopolarizability from the experimental data. The obtained chromopolarizability with the FSI is reduced to about 1/2 of that without the FSI. With the FSI, we determine the chromopolarizability $|alpha_{psi^primepsi}|=(1.44pm 0.02)$ GeV$^{-3}$ and the parameter $kappa=0.139pm 0.005.$ Our results could be useful in studying the interactions of charmonium with light hadrons.



قيم البحث

اقرأ أيضاً

114 - Sergey Barsuk , Jibo He , Emi Kou 2012
We propose to investigate various charmonium states using their common decay channel to p pbar at LHC. Having the branching ratios for charmonium decaying into the p pbar final state measured or calculated, we propose to measure the charmonium produc tion rate for both hadroproduction including soft-diffraction and inclusive production from b-hadron decays. We discuss the theoretical impacts in QCD of measuring different charmonium production rates and also the experimental prospects at LHCb, in particular, those for yet unmeasured eta_c and h_c.
In the present work, we study the OZI-allowed three body open flavor decay properties of higher vector charmonium and bottomonium states with an extended quark pair creation model. For the bottomonium system, we get that (i) the $BBpi$ and $B^*B^*pi$ partial decay widths of the $Upsilon(5S)$ state are consistent with the experiment, and the $BB^*pi$ partial decay width of the $Upsilon(5S)$ state is smaller but very close to the Belles experiment. Meanwhile, (ii) the $BB^*pi$ and $B^*B^*pi$ decay widths of $Upsilon(11020)$ can reachs $2sim3$ MeV. In addition, (iii) for the most of higher vector charmonium states, the partial decay widths of the $DD^*pi$ and $D^*D^*pi$ modes can reach up to several MeV, which may be observed in future experiments.
The dipion transitions $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pi on final-state interaction, especially including the channel coupling to $Kbar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dispersion theory. Through fitting to the available experimental data, we extract values of the transition chromopolarizabilities $|alpha_{Upsilon(mS)Upsilon(nS)}|$, which measure the chromoelectric couplings of the bottomonia with soft gluons. It is found that the $Z_b$ exchange has a slight impact on the extracted chromopolarizablity values, and the obtained $|alpha_{Upsilon(2S)Upsilon(1S)}|$ considering the $Z_b$ exchange is $(0.29pm 0.20)~text{GeV}^{-3}$. Our results could be useful in studying the interactions of bottomonium with light hadrons.
Thermal Hilbert moment QCD sum rules are used to obtain the temperature dependence of the hadronic parameters of charmonium in the vector channel, i.e. the $J$ / $psi$ resonance mass, coupling (leptonic decay constant), total width, and continuum thr eshold. The continuum threshold $s_0$, which signals the end of the resonance region and the onset of perturbative QCD (PQCD), behaves as in all other hadronic channels, i.e. it decreases with increasing temperature until it reaches the PQCD threshold $s_0 = 4 m_Q^2$, with $m_Q$ the charm quark mass, at $Tsimeq 1.22 T_c$. The rest of the hadronic parameters behave very differently from those of light-light and heavy-light quark systems. The $J$ / $psi$ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to $T simeq 1.04 T_c$ beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant and then begins to increase monotonically around $T simeq T_c$. This behaviour of the total width and of the leptonic decay constant provides a strong indication that the $J$ / $psi$ resonance might survive beyond the critical temperature for deconfinement.
138 - Jose A. Oller 2004
We show that the large corrections due to final state interactions (FSI) in the D^+to pi^-pi^+pi^+, D^+_sto pi^-pi^+pi^+, and D^+to K^-pi^+pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase s hifts studies. In this way, broad/overlapping resonances in S-waves are properly treated and the phase motions of the transition amplitudes are driven by the corresponding scattering matrix elements determined in many other experiments. This is an important step forward in resolving the puzzle of the FSI in these decays. We also discuss why the sigma and kappa resonances, hardly visible in scattering experiments, are much more prominent and clearly visible in these decays without destroying the agreement with the experimental pipi and Kpi low energy S-wave phase shifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا