ﻻ يوجد ملخص باللغة العربية
We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differentiable structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points. We recall how the fastest $qP$-polarized waves in anisotropic elastic medium are a given as solutions of the second order hyperbolic pseudodifferential equation $(frac{p^2}{p t^2}-lambda^1(x,D))u(t,x)=h(t,x)$ on $R^{1+3}$, where $sqrt{lambda^1}$ is the Legendre transform of a fiberwise real analytic Finsler function $F$ on $R^3$. If $M subset R^3$ is a $F$-convex smooth bounded domain we say that a travel time of $u$ to $z in p M$ is the first time $t>0$ when the wavefront set of $u$ arrives in $(t,z)$. The aforementioned geometric result can then be utilized to determine the isometry class of $(overline M,F)$ if we have measured a large amount of travel times of $qP$-polarized waves, issued from a dense set of unknown interior point sources on $M$.
We show that the travel time difference functions, measured on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry, if boundary satisfies a certain visibility condition. This corresponds with the inver
Manifold submetries of the round sphere are a class of partitions of the round sphere that generalizes both singular Riemannian foliations, and the orbit decompositions by the orthogonal representations of compact groups. We exhibit a one-to-one corr
A nonlinear inverse problem of antiplane elasticity for a multiply connected domain is examined. It is required to determine the profile of $n$ uniformly stressed inclusions when the surrounding infinite body is subjected to antiplane uniform shear a
For a compact Lie group G we define a regularized version of the Dolbeault cohomology of a G-equivariant holomorphic vector bundles over non-compact Kahler manifolds. The new cohomology is infinite-dimensional, but as a representation of G it decompo
We give a new estimate on the lower bound of the first Dirichlet eigenvalue of a compact Riemannian manifold with negative lower bound of Ricci curvature and provide a solution for a conjecture of H. C. Yang.