ﻻ يوجد ملخص باللغة العربية
The fullerene C$_{60}$, one of the largest molecules identified in the interstellar medium (ISM), has been proposed to form top-down through the photo-chemical processing of large (more than 60 C-atoms) polycyclic aromatic hydrocarbon (PAH) molecules. In this article, we focus on the opposite process, investigating the possibility that fullerenes form from small PAHs, in which bowl-forming plays a central role. We combine laboratory experiments and quantum chemical calculations to study the formation of larger PAHs from charged fluorene clusters. The experiments show that with visible laser irradiation, the fluorene dimer cation - [C$_{13}$H$_{9}$$-$C$_{13}$H$_{9}$]$^+$ - and the fluorene trimer cation - [C$_{13}$H$_{9}$$-$C$_{13}$H$_{8}$$-$C$_{13}$H$_{9}$]$^+$ - undergo photo-dehydrogenation and photo-isomerization resulting in bowl structured aromatic cluster-ions, C$_{26}$H$_{12}$$^+$ and C$_{39}$H$_{20}$$^+$, respectively. To study the details of this chemical process, we employ quantum chemistry that allows us to determine the structures of the newly formed cluster-ions, to calculate the hydrogen loss dissociation energies, and to derive the underlying reaction pathways. These results demonstrate that smaller PAH clusters (with less than 60 C-atoms) can convert to larger bowled geometries that might act as building blocks for fullerenes, as the bowl-forming mechanism greatly facilitates the conversion from dehydrogenated PAHs to cages. Moreover, the bowl-forming induces a permanent dipole moment that - in principle - allows to search for such species using radio astronomy.
Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-he
Besides buckminsterfullerene (C60), other fullerenes and their derivatives may also reside in space. In this work, we study the formation and photo-dissociation processes of astronomically relevant fullerene/anthracene (C14H10) cluster cations in the
We have measured electron-ion recombination for Fe XII forming Fe XI using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. The measured merged beams recomb
We investigated the valence electronic structure of diamondoid particles in the gas phase, utilizing valence photoelectron spectroscopy. The samples were singly or doubly covalently bonded dimers or trimers of the lower diamondoids. Both the bond typ
Advances in infrared and submillimeter technology have allowed for detailed observations of the molecular content of the planet-forming regions of protoplanetary disks. In particular, disks around solar-type stars now have growing molecular inventori