ترغب بنشر مسار تعليمي؟ اضغط هنا

Catalog of Energy Patterns for Mobile Applications

106   0   0.0 ( 0 )
 نشر من قبل Luis Cruz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Software engineers make use of design patterns for reasons that range from performance to code comprehensibility. Several design patterns capturing the body of knowledge of best practices have been proposed in the past, namely creational, structural and behavioral patterns. However, with the advent of mobile devices, it becomes a necessity a catalog of design patterns for energy efficiency. In this work, we inspect commits, issues and pull requests of 1027 Android and 756 iOS apps to identify common practices when improving energy efficiency. This analysis yielded a catalog, available online, with 22 design patterns related to improving the energy efficiency of mobile apps. We argue that this catalog might be of relevance to other domains such as Cyber-Physical Systems and Internet of Things. As a side contribution, an analysis of the differences between Android and iOS devices shows that the Android community is more energy-aware.



قيم البحث

اقرأ أيضاً

74 - Luis Cruz , Rui Abreu 2019
Measuring energy consumption is a challenging task faced by developers when building mobile apps. This paper presents EMaaS: a system that provides reliable energy measurements for mobile applications, without requiring a complex setup. It combines e stimations from an energy model with --- typically more reliable, but also expensive --- hardware-based measurements. On a per scenario basis, it decides whether the energy model is able to provide a reliable estimation of energy consumption. Otherwise, hardware-based measurements are provided. In addition, the system is accessible to the community of mobile software practitioners/researchers in the form of a Software as a Service. With this service, we aim at solving current problems in the field of energy efficiency in mobile software engineering: the complexity of hardware-based power monitor tools, the reliability of energy models, and the continuous need of data to build energy models.
As the killer application of blockchain technology, blockchain-based payments have attracted extensive attention ranging from hobbyists to corporates to regulatory bodies. Blockchain facilitates fast, secure, and cross-border payments without the nee d for intermediaries such as banks. Because blockchain technology is still emerging, systematically organised knowledge providing a holistic and comprehensive view on designing payment applications that use blockchain is yet to be established. If such knowledge could be established in the form of a set of blockchain-specific patterns, architects could use those patterns in designing a payment application that leverages blockchain. Therefore, in this paper, we first identify a tokens lifecycle and then present 12 patterns that cover critical aspects in enabling the state transitions of a token in blockchain-based payment applications. The lifecycle and the annotated patterns provide a payment-focused systematic view of system interactions and a guide to effective use of the patterns.
Despite continuous efforts to build and update network infrastructure, mobile devices in developing regions continue to be constrained by limited bandwidth. Unfortunately, this coincides with a period of unprecedented growth in the size of mobile app lications. Thus it is becoming prohibitively expensive for users in developing regions to download and update mobile apps critical to their economic and educational development. Unchecked, these trends can further contribute to a large and growing global digital divide. Our goal is to better understand the source of this rapid growth in mobile app code size, whether it is reflective of new functionality, and identify steps that can be taken to make existing mobile apps more friendly bandwidth constrained mobile networks. We hypothesize that much of this growth in mobile apps is due to poor resource/code management, and do not reflect proportional increases in functionality. Our hypothesis is partially validated by mini-programs, apps with extremely small footprints gaining popularity in Chinese mobile networks. Here, we use functionally equivalent pairs of mini-programs and Android apps to identify potential sources of bloat, inefficient uses of code or resources that contribute to large package sizes. We analyze a large sample of popular Android apps and quantify instances of code and resource bloat. We develop techniques for automated code and resource trimming, and successfully validate them on a large set of Android apps. We hope our results will lead to continued efforts to streamline mobile apps, making them easier to access and maintain for users in developing regions.
Mobile systems offer portable and interactive computing, empowering users, to exploit a multitude of context-sensitive services, including mobile healthcare. Mobile health applications (i.e., mHealth apps) are revolutionizing the healthcare sector by enabling stakeholders to produce and consume healthcare services. A widespread adoption of mHealth technologies and rapid increase in mHealth apps entail a critical challenge, i.e., lack of security awareness by end-users regarding health-critical data. This paper presents an empirical study aimed at exploring the security awareness of end-users of mHealth apps. We collaborated with two mHealth providers in Saudi Arabia to gather data from 101 end-users. The results reveal that despite having the required knowledge, end-users lack appropriate behaviour , i.e., reluctance or lack of understanding to adopt security practices, compromising health-critical data with social, legal, and financial consequences. The results emphasize that mHealth providers should ensure security training of end-users (e.g., threat analysis workshops), promote best practices to enforce security (e.g., multi-step authentication), and adopt suitable mHealth apps (e.g., trade-offs for security vs usability). The study provides empirical evidence and a set of guidelines about security awareness of mHealth apps.
Patterns are encapsulations of problems and solutions under specific contexts. As the industry is realizing many successes (and failures) in IoT systems development and operations, many IoT patterns have been published such as IoT design patterns and IoT architecture patterns. Because these patterns are not well classified, their adoption does not live up to their potential. To understand the reasons, this paper analyzes an extensive set of published IoT architecture and design patterns according to several dimensions and outlines directions for improvements in publishing and adopting IoT patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا