ﻻ يوجد ملخص باللغة العربية
We discuss physical constrains that observations of high brightness temperature coherent radio emission, with brightness temperatures as high as $T_b sim 10^{35}$ K, impose on the plasma parameters at relativistically moving astrophysical sources. High brightness temperatures imply a minimal plasma energy density at the source. Additional important constraints come from the fact that resonantly emitting particles lose most of their energy to non-resonant inverse Compton and synchrotron processes. We also interpret recent observations of high-to-low frequency drifting features in the spectra of repeating FRBs as analogues of type-III Solar radio bursts produced by reconnection plasma beams within magnetospheres of highly magnetized neutron stars.
Recent localization of the repeating Fast Radio Burst (FRB) 121102 revealed the distance of its host galaxy and luminosities of the bursts. We investigated constraints on the young neutron star (NS) model, that (a) the FRB intrinsic luminosity is sup
The spectra of fast radio bursts (FRBs) encode valuable information about the sources local environment, underlying emission mechanism(s), and the intervening media along the line of sight. We present results from a long-term multiwavelength radio mo
Estimating the all-sky rate of fast radio bursts (FRBs) has been difficult due to small-number statistics and the fact that they are seen by disparate surveys in different regions of the sky. In this paper we provide limits for the FRB rate at 800 MH
We report on the discovery and analysis of bursts from nine new repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 195 to 13
The localization of the repeating fast radio burst (FRB), FRB 121102, suggests that it is associated with a persistent radio-luminous compact source in the FRB host galaxy. Using the FIRST radio catalog, I present a search for luminous persistent sou