ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a cache-aided relay network, where a single server consisting of a library of N files connects with K1 relays through a shared noiseless link, and each relay connects with K2 users through a shared noiseless link. Each relay and user are equipped with a cache memory of M1 and M2 files, respectively. We propose a centralized and a decentralized coded caching scheme that exploit the spared transmission time resource by allowing concurrent transmission between the two layers. It is shown that both caching schemes are approximately optimal, and greatly reduce the transmission delay compared to the previously known caching schemes. Surprisingly, we show that when the relays caching size is equal to a threshold that is strictly smaller than N (e.g. M1=0.382N under the decentralized setup and (K1-1)N/K1 under the centralized setup, when K1=2), our schemes achieve the same delay as if each relay had access to the full library. To our best knowledge, this is the first result showing that even the caching size is strictly smaller than the librarys size, increasing the caching size is wasteful in reducing the transmission latency.
We study downlink beamforming in a single-cell network with a multi-antenna base station (BS) serving cache-enabled users. For a given common rate of the files in the system, we first formulate the minimum transmit power with beamforming at the BS as
In this paper, we investigate a large intelligent surface-enhanced (LIS-enhanced) system, where a LIS is deployed to assist secure transmission. Our design aims to maximize the achievable secrecy rates in different channel models, i.e., Rician fading
Rate-splitting multiple access (RSMA) has been recognized as a promising physical layer strategy for 6G. Motivated by ever increasing popularity of cache-enabled content delivery in wireless communications, this paper proposes an innovative multigrou
This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding
This work investigates the problem of cache-aided content Secure and demand Private Linear Function Retrieval (SP-LFR), where three constraints are imposed on the system:(a) each user is interested in retrieving an arbitrary linear combination of the