In this paper the kink scattering in a two-component scalar field theory model in (1+1)-Minkowskian space-time is addressed. The potential term $U(phi_1,phi_2)$ is given by a polynomial of fourth degree in the first field component and of sixth degree in the second one. The novel characteristic of this model is that the kink variety describes two different types of extended particles. These particles are characterized by its topological charge but also by a new feature determined by a discrete charge $Lambda=0,pm 1$. For this reason, the kink scattering involves a very rich variety of processes, which comprises kink annihilation, reflection, charge exchange, transmutation, etc. It has been found that not only the final velocity of the scattered kinks, but also the final nature of the emerging lumps after the collision are very sensitive on the initial velocities. Asymmetric scattering processes arise when Type I and Type II particles are obliged to collide. In this case, ten different final scenarios are possible. Symmetric scattering events are also discussed.