ﻻ يوجد ملخص باللغة العربية
We study the finite size effect of rigidly rotating strings and closed folded strings in $AdS_3times S^3$ geometry with NS-NS B-field. We calculate the classical exponential corrections to the dispersion relation of infinite size giant magnon and single spike in terms of Lambert $mathbf{W}-$function. We also write the analytic expression for the dispersion relation of finite size Gubser-Klebanov-Polyakov (GKP) string in the form of Lambert $mathbf{W}-$function.
We study the finite size effect of rigidly rotating and spinning folded strings in $(AdS_3times S^3)_{varkappa}$ background. We calculate the leading order exponential corrections to the infinite size dispersion relation of the giant magnon, and sing
We discuss finite-size corrections to the spiky strings in $AdS$ space which is dual to the long $mathcal{N}=4$ SYM operators of the form Tr($Delta_+ ^{J_1}phi_1Delta_+ ^{J_2}phi_2...Delta_+ ^{J_n}phi_n$). We express the finite-size dispersion relati
We study superstrings on AdS_3 x S^3 x T^4 supported by a combination of Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz three form fluxes, and construct a set of finite-gap equations that describe the classical string spectrum. Using the recently prop
$SL(2,mathbb{Z})$ invariant action for probe $(m,n)$ string in $AdS_3times S^3times T^4$ with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann-Rosochatius (NR) system. We present the deformed feature
Sigma model in $AdS_3times S^3$ background supported by both NS-NS and R-R fluxes is one of the most distinguished integrable models. We study a class of classical string solutions for $N$-spike strings moving in $AdS_3 times S^1$ with angular moment