ﻻ يوجد ملخص باللغة العربية
The semi-empirical initial-final mass relation (IFMR) connects spectroscopically analyzed white dwarfs in star clusters to the initial masses of the stars that formed them. Most current stellar evolution models, however, predict that stars will evolve to white dwarfs $sim$0.1 M$_odot$ less massive than that found in the IFMR. We first look at how varying theoretical mass-loss rates, third dredge-up efficiencies, and convective-core overshoot may help explain the differences between models and observations. These parameters play an important role at the lowest masses (M$_{rm initial}$ $<$ 3 M$_odot$). At higher masses, only convective-core overshoot meaningfully affects white dwarf mass, but alone it likely cannot explain the observed white dwarf masses nor why the IFMR scatter is larger than observational errors predict. These higher masses, however, are also where rotational mixing in main sequence stars begins to create more massive cores, and hence more massive white dwarfs. This rotational mixing also extends a stars lifetime, making faster rotating progenitors appear like less massive stars in their semi-empirical age analysis. Applying the observed range of young B-dwarf rotations to the MIST or SYCLIST rotational models demonstrates a marked improvement in reproducing both the observed IFMR data and its scatter. The incorporation of both rotation and efficient convective-core overshoot significantly improves the match with observations. This work shows that the IFMR provides a valuable observational constraint on how rotation and convective-core overshoot affect the core evolution of a star.
(abridged) Recent work on several beta Cephei stars has succeeded in constraining both their interior rotation profile and their convective core overshoot. In particular, a recent study focusing on theta$ Oph has shown that a convective core overshoo
The frequency ratios $r_{01}$ and $r_{10}$ of KIC 11081729 decrease firstly and then increase with the increase in frequency. For different spectroscopic constraints, all models with overshooting parameter $delta_{mathrm{ov}}$ less than 1.7 can not r
We present the preliminary results of a survey of the open clusters NGC3532 and NGC2287 for new white dwarf members which can help improve understanding of the form of the upper end of the stellar initial mass-final mass relation. We identify four ob
The initial-final mass relation (IFMR) represents the total mass lost by a star during the entirety of its evolution from the zero age main sequence to the white dwarf cooling track. The semi-empirical IFMR is largely based on observations of DA whit
Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries and single stars alike. We compute `effective overshoot measures that