Amenability, connected components, and definable actions


الملخص بالإنكليزية

We study amenability of definable groups and topological groups, and prove various results, briefly described below. Among our main technical tools, of interest in its own right, is an elaboration on and strengthening of the Massicot-Wagner version of the stabilizer theorem, and also some results about measures and measure-like functions (which we call means and pre-means). As an application we show that if $G$ is an amenable topological group, then the Bohr compactification of $G$ coincides with a certain ``weak Bohr compactification introduced in [24]. In other words, the conclusion says that certain connected components of $G$ coincide: $G^{00}_{topo} = G^{000}_{topo}$. We also prove wide generalizations of this result, implying in particular its extension to a ``definable-topological context, confirming the main conjectures from [24]. We also introduce $bigvee$-definable group topologies on a given $emptyset$-definable group $G$ (including group topologies induced by type-definable subgroups as well as uniformly definable group topologies), and prove that the existence of a mean on the lattice of closed, type-definable subsets of $G$ implies (under some assumption) that $cl(G^{00}_M) = cl(G^{000}_M)$ for any model $M$. Thirdly, we give an example of a $emptyset$-definable approximate subgroup $X$ in a saturated extension of the group $mathbb{F}_2 times mathbb{Z}$ in a suitable language (where $mathbb{F}_2$ is the free group in 2-generators) for which the $bigvee$-definable group $H:=langle X rangle$ contains no type-definable subgroup of bounded index. This refutes a conjecture by Wagner and shows that the Massicot-Wagner approach to prove that a locally compact (and in consequence also Lie) ``model exists for each approximate subgroup does not work in general (they proved in [29] that it works for definably amenable approximate subgroups).

تحميل البحث