ﻻ يوجد ملخص باللغة العربية
We investigate a motion of a colloid in a harmonic trap driven out of equilibrium by an external non-conservative force producing a torque in the presence of a uniform magnetic field. We find that steady state exists only for a proper range of parameters such as mass, viscosity coefficient, and stiffness of the harmonic potential, and the magnetic field, which is not observed in the overdamped limit. We derive the existence condition for the steady state. We examine the combined influence of the non-conservative force and the magnetic field on non-equilibrium characteristics such as non-Boltzmann steady-state probability distribution function, probability currents, entropy production, position-velocity correlation, and violation of fluctuation-dissipation relation.
We investigate the motion of a colloidal particle driven out of equilibrium by an external torque. We use the molecular dynamics simulation that is alternative to the numerical integration approach based on the Langevin equation and is expected to mi
Motivated by the precedent study of Ordenes-Huanca and Velazquez [JSTAT textbf{093303} (2016)], we address the study of a simple model of a pure non-neutral plasma: a system of identical non-relativistic charged particles confined under an external h
We present a numerical study based on Monte Carlo algorithm of the magnetic properties of a mixed Ising ferrimagnetic model on a cubic lattice where spins $sigma =pm 1/2$ and spins $S=0,pm 1$ are in alternating sites on the lattice. We carried out ex
We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical o
We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux, w