ﻻ يوجد ملخص باللغة العربية
Strain-coupled magnetoelectric (ME) phenomena in piezoelectric / ferromagnetic thin-film bilayers are a promising paradigm for sensors and information storage devices, where strain is utilized to manipulate the magnetization of the ferromagnetic film. In-plane magnetization rotation with an electric field across the film thickness has been challenging due to the virtual elimination of in-plane piezoelectric strain by substrate clamping, and to the requirement of anisotropic in-plane strain in two-terminal devices. We have overcome both of these limitations by fabricating lithographically patterned devices with a piezoelectric membrane on a soft substrate platform, in which in-plane strain is freely generated, and a patterned edge constraint that transforms the nominally isotropic piezoelectric strain into the required uniaxial strain. We fabricated 500 nm thick, (001) oriented [Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$]$_{0.7}$-[PbTiO$_3$]$_{0.3}$ (PMN-PT) unclamped piezoelectric membranes with ferromagnetic Ni overlayers. Guided by analytical and numerical continuum elastic calculations, we designed and fabricated two-terminal devices exhibiting Ni magnetization rotation in response to an electric field across the PMN-PT. Similar membrane heterostructures could be used to apply designed strain patterns to many other materials systems to control properties such as superconductivity, band topology, conductivity, and optical response.
The thin film configuration presents obvious practical advantages over the 1D implementation in energy harvesting systems such as easily manufacturing and processing and long lasting and stable devices. However, most of the ZnO-based piezoelectric na
How the magnetoelectric coupling actually occurs on a microscopic level in multiferroic BiFeO3 is not well known. By using the high-resolution single crystal neutron diffraction techniques, we have determined the electric polarization of each individ
We present a design for a piezoelectric-driven uniaxial stress cell suitable for use at ambient and cryogenic temperatures, and that incorporates both a displacement and a force sensor. The cell has a diameter of 46 mm and a height of 13 mm. It can a
Double-negative acoustic metamaterials (AMMs) offer the promising ability of superlensing for applications in ultrasonography, biomedical sensing and nondestructive evaluation. Here, under the simultaneous increasing or non-increasing mechanisms, we
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution in the quest to realize magnetoelectric cou-pling between ferromagnetic and ferroelectric order parameters. Desp