ﻻ يوجد ملخص باللغة العربية
Aims. To present the new novel statistical clustering tool INDICATE which assesses and quantifies the degree of spatial clustering of each object in a dataset, discuss its applications as a tracer of morphological stellar features in star forming regions, and to look for these features in the Carina Nebula (NGC 3372). Results. We successfully recover known stellar structure of the Carina Nebula, including the 5 young star clusters in this region. Four sub-clusters contain no, or very few, stars with a degree of association above random which suggests they may be fluctuations in the field rather than real clusters. In addition we find: (1) Stars in the NW and SE regions have significantly different clustering tendencies, which is reflective of differences in the apparent star formation activity in these regions. Further study is required to ascertain the physical origin of the difference; (2) The different clustering properties between these two regions are even more pronounced for OB stars; (3) There are no signatures of classical mass segregation present in the SE region - massive stars here are not spatially concentrated together above random; (4) Stellar concentrations are more frequent around massive stars than typical for the general population, particularly in the Tr14 cluster; (5) There is a relation between the concentration of OB stars and the concentration of (lower mass) stars around OB stars in the centrally concentrated Tr14 and Tr15, but no such relation exists in Tr16. We conclude this is due to the highly sub-structured nature of Tr16. Conclusions. INDICATE is a powerful new tool employing a novel approach to quantify the clustering tendencies of individual objects in a dataset within a user-defined parameter space. As such it can be used in a wide array of data analysis applications.
Aims. To demonstrate that `INDICATE is a powerful spatial analysis tool which when combined with kinematic data from Gaia DR2 can be used to robustly probe star formation history. Methods. We compared the dynamic & spatial distributions of young st
A high number of embedded clusters is found in the Galaxy. Depending on the formation scenario, most of them can evolve to unbounded groups that are dissolved within a few tens of Myr. A systematic study of young stellar clusters showing distinct cha
Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models provide a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular c
Observations of the spatial distributions of young stars in star-forming regions can be linked to the theory of clustered star formation using spatial statistical methods. The MYStIX project provides rich samples of young stars from the nearest high-
The purpose of this research is to study the connection of global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object population. The ana