ﻻ يوجد ملخص باللغة العربية
Warm absorbers are found in many AGN and consist of clouds moving at moderate radial velocities, showing complex ionization structures and having moderate to large column densities. Using 1D numerical calculations, we confirm earlier suggestions that the energy released by an AGN pushes the surrounding gas outward in a bubble until this reaches transparency. Typical AGN episode durations of $5times 10^4$ yr supply enough energy for this, except in very gas-rich and/or very compact galaxies, such as those in the early Universe. In those galaxies, the AGN might remain hidden for many periods of activity, hiding the black hole growth. The typical radii of $0.1-1$ kpc, velocities of $100-1000$ km s$^{-1}$ and resulting optical depths are consistent with observations of warm absorbers. The resulting structure is a natural outcome of outflows driven by AGN buried in an optically thick gas envelope, and has a total mass comparable to the final $M -sigma$ mass the central supermassive black hole will eventually reach.These results suggest that AGN can feed very efficiently by agitating this surrounding dense material. This may not be easy to observe, as this gas is Compton thick along many sightlines. The infall may produce episodic star formation in the centre, building up nuclear star clusters simultaneously with the growth of the central black hole.
We examine the host morphologies of heavily obscured active galactic nuclei (AGN) at $zsim1$ to test whether obscured supermassive black hole growth at this epoch is preferentially linked to galaxy mergers. Our sample consists of 154 obscured AGN wit
Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, w
We present the analysis of simultaneous NuSTAR and XMM-Newton data of 8 Compton-thick (CT-) active galactic nuclei (AGN) candidates selected in the Swift-Burst Alert Telescope (BAT) 100 month survey. This work is part of an ongoing effort to find and
Compton Thick (CT) AGN are a key ingredient of Cosmic X-ray Background (CXB) synthesis models, but are still an elusive component of the AGN population beyond the local Universe. Multi-wavelength surveys are the only way to find them at z > 0.1, and
We constrain the number density and evolution of Compton-thick Active Galactic Nuclei (AGN), and their contribution to the extragalactic X-ray background. In the local Universe we use the wide area surveys from the Swift and INTEGRAL satellites, whil