ﻻ يوجد ملخص باللغة العربية
In this paper, we propose to disentangle and interpret contextual effects that are encoded in a pre-trained deep neural network. We use our method to explain the gaming strategy of the alphaGo Zero model. Unlike previous studies that visualized image appearances corresponding to the network output or a neural activation only from a global perspective, our research aims to clarify how a certain input unit (dimension) collaborates with other units (dimensions) to constitute inference patterns of the neural network and thus contribute to the network output. The analysis of local contextual effects w.r.t. certain input units is of special values in real applications. Explaining the logic of the alphaGo Zero model is a typical application. In experiments, our method successfully disentangled the rationale of each move during the Go game.
We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorpor
To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs predictions. These interpretations are usually given in the form of heatmaps, eac
Deep Neural Networks (DNNs) deliver state-of-the-art performance in many image recognition and understanding applications. However, despite their outstanding performance, these models are black-boxes and it is hard to understand how they make their d
The astonishing success of AlphaGo Zerocite{Silver_AlphaGo} invokes a worldwide discussion of the future of our human society with a mixed mood of hope, anxiousness, excitement and fear. We try to dymystify AlphaGo Zero by a qualitative analysis to i
Deep convolutional neural networks (CNNs) have been actively adopted in the field of music information retrieval, e.g. genre classification, mood detection, and chord recognition. However, the process of learning and prediction is little understood,