Star-disc (mis-)alignment in Rho Oph and Upper Sco: insights from spatially resolved disc systems with K2 rotation periods


الملخص بالإنكليزية

The discovery of close in, giant planets (hot Jupiters) with orbital angular momentum vectors misaligned with respect to the rotation axis of their host stars presents problems for planet formation theories in which planets form in discs with angular momentum vectors aligned with that of the star. Violent, high eccentricity migration mechanisms purported to elevate planetary orbits above the natal disc plane predict populations of proto-hot Jupiters which have not been observed with Kepler. Alternative theories invoking primordial star-disc misalignments have recently received more attention. Here, the relative alignment between stars and their protoplanetary discs is assessed for the first time for a sample of 20 pre-main-sequence stars. Recently published rotation periods derived from high quality, long duration, high cadence K2 light curves for members of the $rho$ Ophiuchus and Upper Scorpius star forming regions are matched with high angular resolution observations of spatially resolved discs and projected rotational velocities to determine stellar rotation axis inclination angles which are then compared to the disc inclinations. Ten of the fifteen systems for which the stellar inclination could be estimated are consistent with star-disc alignment while five systems indicate potential misalignments between the star and its disc. The potential for chance misalignment of aligned systems due to projection effects and characteristic measurement uncertainties is also investigated. While the observed frequency of apparent star-disc misalignments could be reproduced by a simulated test population in which 100% of systems are truly aligned, the distribution of the scale of inferred misalignment angles could not.

تحميل البحث