ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronic Interactions of Energetic Charged Particles in Protogalactic Outflow Environments and Implications for the Early Evolution of Galaxies

73   0   0.0 ( 0 )
 نشر من قبل Ellis Owen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the interactions of energetic hadronic particles with the media in outflows from star-forming protogalaxies. These particles undergo pion-producing interactions which can drive a heating effect in the outflow, while those advected by the outflow also transport energy beyond the galaxy, heating the circumgalactic medium. We investigate how this process evolves over the length of the outflow and calculate the corresponding heating rates in advection-dominated and diffusion-dominated cosmic ray transport regimes. In a purely diffusive transport scenario, we find the peak heating rate reaches $10^{-26};! {rm erg~cm}^{-3};! {rm s}^{-1}$ at the base of the outflow where the wind is driven by core-collapse supernovae at an event rate of 0.1 $text{yr}^{-1}$, but does not extend beyond 2 kpc. In the advection limit, the peak heating rate is reduced to $10^{-28};! {rm erg~cm}^{-3};! {rm s}^{-1}$, but its extent can reach to tens of kpc. Around 10% of the cosmic rays injected into the system can escape by advection with the outflow wind, while the remaining cosmic rays deliver an important interstellar heating effect. We apply our cosmic ray heating model to the recent observation of the high-redshift galaxy MACS1149-JD1 and show that it could account for the quenching of a previous starburst inferred from spectroscopic observations. Re-ignition of later star-formation may be caused by the presence of filamentary circumgalactic inflows which are reinstated after cosmic ray heating has subsided.



قيم البحث

اقرأ أيضاً

120 - J. F. Wang , G. Qin 2017
It is very important to understand stochastic diffusion of energetic charged particles in non-uniform background magnetic field in plasmas of astrophysics and fusion devices. Using different methods considering along-field adiabatic focusing effect, various authors derived parallel diffusion coefficient $kappa_parallel$ and its correction $T$ to $kappa_{parallel 0}$, where $kappa_{parallel 0}$ is the parallel diffusion coefficient without adiabatic focusing effect. In this paper, using the improved perturbation method developed by He & Schlickeiser and iteration process, we obtain a new correction $T$ to $kappa_{parallel 0}$. Furthermore, by employing the isotropic pitch-angle scattering model $D_{mumu}=D(1-mu^2)$, we find that $T$ has the different sign as that of $T$. In this paper the spatial perpendicular diffusion coefficient $kappa_bot$ with the adiabatic focusing effect is also obtained.
We present the results of a new search for galaxies at redshift z ~ 9 in the first two Hubble Frontier Fields with completed HST WFC3/IR and ACS imaging. To ensure robust photometric redshift solutions, and to minimize incompleteness, we confine our search to objects with H_{160} < 28.6 (AB mag), consider only image regions with an rms noise sigma_{160} > 30 mag (within a 0.5-arcsec diameter aperture), and insist on detections in both H_{160} and J_{140}. The result is a survey covering an effective area (after accounting for magnification) of 10.9 sq. arcmin, which yields 12 galaxies at 8.4 < z < 9.5. Within the Abell-2744 cluster and parallel fields we confirm the three brightest objects reported by Ishigaki et al. (2014), but recover only one of the four z > 8.4 sources reported by Zheng et al. (2014). In the MACSJ0416.1-240 cluster field we report five objects, and explain why each of these eluded detection or classification as z ~ 9 galaxies in the published searches of the shallower CLASH data. Finally, we uncover four z ~ 9 galaxies from the previously unsearched MACSJ0416.1-240 parallel field. Based on the published magnification maps we find that only one of these 12 galaxies is likely boosted by more than a factor of two by gravitational lensing. Consequently we are able to perform a fairly straightforward reanalysis of the normalization of the z ~ 9 UV galaxy luminosity function as explored previously in the HUDF12 programme. We conclude that the new data strengthen the evidence for a continued smooth decline in UV luminosity density (and hence star-formation rate density) from z ~ 8 to z ~ 9, contrary to recent reports of a marked drop-off at these redshifts. This provides further support for the scenario in which early galaxy evolution is sufficiently extended to explain cosmic reionization.
190 - S. Pilling 2009
Deeply inside dense molecular clouds and protostellar disks, the interstellar ices are protected from stellar energetic UV photons. However, X-rays and energetic cosmic rays can penetrate inside these regions triggering chemical reactions, molecular dissociation and evaporation processes. We present experimental studies on the interaction of heavy, highly charged and energetic ions (46 MeV Ni^13+) with ammonia-containing ices in an attempt to simulate the physical chemistry induced by heavy ion cosmic rays inside dense astrophysical environments. The measurements were performed inside a high vacuum chamber coupled to the heavy ion accelerator GANIL (Grand Accelerateur National dIons Lourds) in Caen, France.textit{In-situ} analysis is performed by a Fourier transform infrared spectrometer (FTIR) at different fluences. The averaged values for the dissociation cross section of water, ammonia and carbon monoxide due to heavy cosmic ray ion analogs are ~2x10^{-13}, 1.4x10^{-13} and 1.9x10^{-13} cm$^2$, respectively. In the presence of a typical heavy cosmic ray field, the estimated half life for the studied species is 2-3x10^6 years. The ice compaction (micropore collapse) due to heavy cosmic rays seems to be at least 3 orders of magnitude higher than the one promoted by (0.8 MeV) protons . In the case of the irradiated H2O:NH3:CO ice, the infrared spectrum at room temperature reveals five bands that were tentatively assigned to vibration modes of the zwitterionic glycine (+NH3CH2COO-).
We have made a serendipitous discovery of a massive cD galaxy at z=1.096 in a candidate rich cluster in the HUDF area of GOODS-South. This brightest cluster galaxy is the most distant cD galaxy confirmed to date. Ultra-deep HST/WFC3 images reveal an extended envelope starting from ~10 kpc and reaching ~70 kpc in radius along the semi-major axis. The spectral energy distributions indicate that both its inner component and outer envelope are composed of an old, passively-evolving stellar population. The cD galaxy lies on the same mass-size relation as the bulk of quiescent galaxies at similar redshifts. The cD galaxy has a higher stellar mass surface density but a similar velocity dispersion to those of more-massive, nearby cDs. If the cD galaxy is one of the progenitors of todays more massive cDs, its size and stellar mass have had to increase on average by factors of $3.4pm1.1$ and $3.3pm1.3$ over the past ~8 Gyrs, respectively. Such increases in size and stellar mass without being accompanied by significant increases in velocity dispersion are consistent with evolutionary scenarios driven by both major and minor dry mergers. If such cD envelopes originate from dry mergers, our discovery of even one example proves that some BCGs entered the dry merger phase at epochs earlier than z=1. Our data match theoretical models which predict that the continuance of dry mergers at z<1 can result in structures similar to those of massive cD galaxies seen today. Moreover, our discovery is a surprise given that the extreme depth of the HUDF is essential to reveal such an extended cD envelope at z>1 and, yet, the HUDF covers only a minuscule region of sky. Adding that cDs are rare, Our serendipitous discovery hints that such cDs may be more common than expected. [Abridged]
We introduce the Virgo Consortiums EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolutio n and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to $lesssim 0.2$ dex over the full mass range, $10^8 < M_*/M_odot lesssim 10^{11}$, a level of agreement close to that attained by semi-analytic models, and unprecedented for hydrodynamical simulations. We compare our results to a representative set of low-redshift observables not considered in the calibration, and find good agreement with the observed galaxy specific star formation rates, passive fractions, Tully-Fisher relation, total stellar luminosities of galaxy clusters, and column density distributions of intergalactic CIV and OVI. While the mass-metallicity relations for gas and stars are consistent with observations for $M_* gtrsim 10^9 M_odot$, they are insufficiently steep at lower masses. The gas fractions and temperatures are too high for clusters of galaxies, but for groups these discrepancies can be resolved by adopting a higher heating temperature in the subgrid prescription for AGN feedback. EAGLE constitutes a valuable new resource for studies of galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا