ترغب بنشر مسار تعليمي؟ اضغط هنا

C2H N=1-0 and N2H+ J=1-0 observations of Planck Galactic cold clumps

138   0   0.0 ( 0 )
 نشر من قبل Xunchuan Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A survey of C2H N=1-0 and N2H+ J=1-0 toward Planck Galactic cold clumps (PGCCs) was performed using the Purple Mountain Observatorys 13.7 m telescope. C2H and N2H+ were chosen to study the chemical evolutionary states of PGCCs. Among 121 observed molecular cores associated with PGCCs, 71 and 58 are detected with C2H N=1-0 and N2H+ J=1-0, respectively. The detected lines of most sources can be fitted with a single component with compatible Vlsr and line widths, which confirms that these PGCC cores are very cold (with gas temperatures 9-21 K) and quiescent while still dominanted by turbulence. The ratio between the column densities of C2H and N2H+ (N(C2H)/N(N2H+)) is found to be a good tracer for the evolutionary states of PGCC cores. Gas-grain chemical model can reproduce the decreasing trend of N(C2H)/N(N2H+) as a function of time. The cores with the lowest abundances of N2H+ (X[N2H+] < 10^{-10}) are the youngest, and have nearly constant abundances of C2H. In evolved cores with X[N2H+] ~ 1E-9, abundances of C2H drop quickly as the exhaustion of carbon atoms. Although these PGCC cores are in different evolutionary states, they are all quite young (<5E5 yr) with N(C2H) > N(N2H+). Mapping observations are carried out toward 20 PGCC cores. The PGCC cores in Cepheus have lower N(C2H)/N(N2H+) and larger line widths compared with those in Taurus. This implies that PGCC cores in Taurus are less chemically evolved than those in Cepheus.



قيم البحث

اقرأ أيضاً

The study of infall motion helps us to understand the initial stages of star formation. In this paper, we use the IRAM 30-m telescope to make mapping observations of 24 infall sources confirmed in previous work. The lines we use to track gas infall m otions are HCO+ (1-0) and H13CO+ (1-0). All 24 sources show HCO+ emissions, while 18 sources show H13CO+ emissions. The HCO+ integrated intensity maps of 17 sources show clear clumpy structures; for the H13CO+ line, 15 sources show clumpy structures. We estimated the column density of HCO+ and H13CO+ using the RADEX radiation transfer code, and the obtained [HCO+]/[H2] and [H13CO+]/[HCO+] of these sources are about 10^-11 ~ 10^-7 and 10^-3~1, respectively. Based on the asymmetry of the line profile of the HCO+, we distinguish these sources: 19 sources show blue asymmetric profiles, and the other sources show red profiles or symmetric peak profiles. For eight sources that have double-peaked blue line profiles and signal-to-noise ratios greater than 10, the RATRAN model is used to fit their HCO^+ (1-0) lines, and to estimate their infall parameters. The mean Vin of these sources are 0.3 ~ 1.3 km/s, and the Min are about 10^-3 ~ 10^-4 Msun/yr , which are consistent with the results of intermediate or massive star formation in previous studies. The Vin estimated from the Myers model are 0.1 ~ 1.6 km/s, and the Min are within 10^-3 ~ 10^-5 Msun/yr. In addition, some identified infall sources show other star-forming activities, such as outflows and maser emissions. Especially for those sources with a double-peaked blue asymmetric profile, most of them have both infall and outflow evidence.
Gravitational accretion accumulates the original mass, and this process is crucial for us to understand the initial phases of star formation. Using the specific infall profiles in optically thick and thin lines, we searched the clumps with infall mot ion from the Milky Way Imaging Scroll Painting (MWISP) CO data in previous work. In this study, we selected 133 sources of them as a sub-sample for further research and identification. The excitation temperatures of these sources are between 7.0 and 38.5 K, while the H_2 column densities are between 10^21 and 10^23 cm^-2. We have observed optically thick lines HCO+ (1-0) and HCN (1-0) using the DLH 13.7-m telescope, and found 56 sources of them with blue profile and no red profile in these two lines, which are likely to have infall motions, with the detection rate of 42%. It suggests that using CO data to restrict sample can effectively improve the infall detection rate. Among these confirmed infall sources, there are 43 associated with Class 0/I young stellar objects (YSOs), and 13 are not. These 13 sources are probably associated with the sources in earlier evolutionary stage. By comparison, the confirmed sources which are associated with Class 0/I YSOs have higher excitation temperatures and column densities, while the other sources are colder and have lower column densities. Most infall velocities of the sources we confirmed are between 10^-1 to 10^0 km s^-1, which is consistent with previous studies.
84 - P. de Vicente 2016
Observations of 28SiO v=0 J=1-0 line emission (7-mm wavelength) from AGB stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB star s and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We present systematic observations of 28SiO v=0 J=1-0 emission in 28 evolved stars, performed with the 40~m radio telescope of the IGN in Yebes, Spain. We find that the composite core plus plateau profiles are almost always present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira ($chi$ Cyg), as well as in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those of other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the very inner circumstellar layers, prior to dust formation. The central spectral feature is found to be systematically composed of a number of narrow spikes, except for X Her and RS Cnc, in which it shows a smooth shape that is very similar to that observed in CO emission. These spikes show a significant (and mostly chaotic) time variation, while in all cases the smooth components remain constant within the uncertainties. The profile shape could come from the superposition of standard wide profiles and a group of weak maser spikes. Alternatively, we speculate that the very similar profiles detected in objects that are axisymmetric may be indicative of the systematic presence of a significant axial symmetry in the very inner circumstellar shells around AGB stars; the presence of such symmetry would be independent of the probable weak maser effects in the central spikes.
We report a statistical analysis exploring the origin of the overall low star formation efficiency (SFE) of the Galactic central molecular zone (CMZ) and the SFE diversity among the CMZ clouds using a wide-field HCN $J$=4-3 map, whose optically thin critical density ($sim10^7,mathrm{cm}^{-3}$) is the highest among the tracers ever used in CMZ surveys. Logistic regression is performed to empirically formulate star formation probability of 195 HCN clumps, 13 of which contain star formation signatures. The explanatory parameters in the best-fit model are reduced into the virial parameter $alpha_{mathrm{vir}}$ without significant contribution from other parameters, whereas the performance of the model without $alpha_{mathrm{vir}}$ is no better than that using randomly generated data. The threshold $alpha_{mathrm{vir}}$ is 6, which translates into a volume density ($n_{mathrm{H_2}}$) of $10^{4.6},mathrm{cm}^{-3}$ with the $n_{mathrm{H_2}}$-$alpha_{mathrm{vir}}$ correlation. The scarcity of the low-$alpha_{mathrm{vir}}$ clumps, whose fraction to all HCN clumps is 0.1, can be considered as one of the immediate causes of the suppressed SFE. No correlation between the clump size or mass and star formation probability is found, implying that HCN $J$=4-3 does not immediately trace the mass of star-forming gas above a threshold density. Meanwhile, star-forming and non-star-forming clouds are degenerate in the physical parameters of the CS $mathit{J}$=1-0 clouds, highlighting the efficacy of the HCN $mathit{J}$=4-3 line to probe star-forming regions in the CMZ. The time scale of the high-$alpha_{mathrm{vir}}$ to low-$alpha_{mathrm{vir}}$ transition is $lesssim2$ Myr, which is consistent with the tidal compression and X1/X2 orbit transition models but possibly does not fit the cloud-cloud collision picture.
131 - Hiroshi Imai 2012
In this Letter, we report detections of SiO v=3 J=1--0 maser emission in very long baseline interferometric (VLBI) observations towards 4 out of 12 long-period variable stars: WX Psc, R Leo, W Hya, and T Cep. The detections towards WX Psc and T Cep a re new ones. We also present successful astrometric observations of SiO v=2 and v=3 J=1--0 maser emissions associated with two stars: WX Psc and W Hya and their position-reference continuum sources: J010746.0+131205 and J135146.8-291218 with the VLBI Exploration of Radio Astrometry (VERA). The relative coordinates of the position-reference continuum source and SiO v=3 maser spots were measured with respect to those of an SiO v=2 maser spot adopted as fringe-phase reference. Thus the faint continuum sources were inversely phase-referenced to the bright maser sources. It implies possible registration of multiple SiO maser line maps onto a common coordinate system with 10 microarcsecond-level accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا