ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Translation: A Literature Review

275   0   0.0 ( 0 )
 نشر من قبل Mayank Agarwal
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine translation (MT) plays an important role in benefiting linguists, sociologists, computer scientists, etc. by processing natural language to translate it into some other natural language. And this demand has grown exponentially over past couple of years, considering the enormous exchange of information between different regions with different regional languages. Machine Translation poses numerous challenges, some of which are: a) Not all words in one language has equivalent word in another language b) Two given languages may have completely different structures c) Words can have more than one meaning. Owing to these challenges, along with many others, MT has been active area of research for more than five decades. Numerous methods have been proposed in the past which either aim at improving the quality of the translations generated by them, or study the robustness of these systems by measuring their performance on many different languages. In this literature review, we discuss statistical approaches (in particular word-based and phrase-based) and neural approaches which have gained widespread prominence owing to their state-of-the-art results across multiple major languages.



قيم البحث

اقرأ أيضاً

Machine learning may enable the automated generation of test oracles. We have characterized emerging research in this area through a systematic literature review examining oracle types, researcher goals, the ML techniques applied, how the generation process was assessed, and the open research challenges in this emerging field. Based on a sample of 22 relevant studies, we observed that ML algorithms generated test verdict, metamorphic relation, and - most commonly - expected output oracles. Almost all studies employ a supervised or semi-supervised approach, trained on labeled system executions or code metadata - including neural networks, support vector machines, adaptive boosting, and decision trees. Oracles are evaluated using the mutation score, correct classifications, accuracy, and ROC. Work-to-date show great promise, but there are significant open challenges regarding the requirements imposed on training data, the complexity of modeled functions, the ML algorithms employed - and how they are applied - the benchmarks used by researchers, and replicability of the studies. We hope that our findings will serve as a roadmap and inspiration for researchers in this field.
177 - Deng Cai , Yan Wang , Huayang Li 2021
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.
Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results, and identify future trends to encourage researchers to advance their current work.
110 - Xu Tan , Yichong Leng , Jiale Chen 2019
Multilingual neural machine translation (NMT) has recently been investigated from different aspects (e.g., pivot translation, zero-shot translation, fine-tuning, or training from scratch) and in different settings (e.g., rich resource and low resourc e, one-to-many, and many-to-one translation). This paper concentrates on a deep understanding of multilingual NMT and conducts a comprehensive study on a multilingual dataset with more than 20 languages. Our results show that (1) low-resource language pairs benefit much from multilingual training, while rich-resource language pairs may get hurt under limited model capacity and training with similar languages benefits more than dissimilar languages; (2) fine-tuning performs better than training from scratch in the one-to-many setting while training from scratch performs better in the many-to-one setting; (3) the bottom layers of the encoder and top layers of the decoder capture more language-specific information, and just fine-tuning these parts can achieve good accuracy for low-resource language pairs; (4) direct translation is better than pivot translation when the source language is similar to the target language (e.g., in the same language branch), even when the size of direct training data is much smaller; (5) given a fixed training data budget, it is better to introduce more languages into multilingual training for zero-shot translation.
We present a probabilistic framework for multilingual neural machine translation that encompasses supervised and unsupervised setups, focusing on unsupervised translation. In addition to studying the vanilla case where there is only monolingual data available, we propose a novel setup where one language in the (source, target) pair is not associated with any parallel data, but there may exist auxiliary parallel data that contains the other. This auxiliary data can naturally be utilized in our probabilistic framework via a novel cross-translation loss term. Empirically, we show that our approach results in higher BLEU scores over state-of-the-art unsupervised models on the WMT14 English-French, WMT16 English-German, and WMT16 English-Romanian datasets in most directions. In particular, we obtain a +1.65 BLEU advantage over the best-performing unsupervised model in the Romanian-English direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا