ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental investigation of majorization uncertainty relations in the high-dimensional systems

109   0   0.0 ( 0 )
 نشر من قبل Yuan Yuan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Uncertainty relation is not only of fundamental importance to quantum mechanics, but also crucial to the quantum information technology. Recently, majorization formulation of uncertainty relations (MURs) have been widely studied, ranging from two measurements to multiple measurements. Here, for the first time, we experimentally investigate MURs for two measurements and multiple measurements in the high-dimensional systems, and study the intrinsic distinction between direct-product MURs and direct-sum MURs. The experimental results reveal that by taking different nonnegative Schur-concave functions as uncertainty measure, the two types of MURs have their own particular advantages, and also verify that there exists certain case where three-measurement majorization uncertainty relation is much stronger than the one obtained by summing pairwise two-measurement uncertainty relations. Our work not only fills the gap of experimental studies of majorization uncertainty relations, but also represents an advance in quantitatively understanding and experimental verification of majorization uncertainty relations which are universal and capture the essence of uncertainty in quantum theory.



قيم البحث

اقرأ أيضاً

In spite of enormous theoretical and experimental progresses in quantum uncertainty relations, the experimental investigation of most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A significant problem is that previous studies on the classification of MURs only focus on their mathematical expressions, while the physical difference between various forms remains unknown. First, we use a guessing game formalism to study the MURs, which helps us disclosing their physical nature, and distinguishing the essential differences of physical features between diverse forms of MURs. Second, we tighter the bounds of MURs in terms of flatness processes, or equivalently, in terms of majorization lattice. Third, to benchmark our theoretical results, we experimentally verify MURs in the photonic systems.
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system. In the literature, many experiments have been devoted to the test of the uncertaint y relations which mainly focus on the pure states. Here we present an experimental investigation on the optimal majorization uncertainty for mixed states by means of the coherent light. The polarization states with adjustable mixedness are prepared by the combination of two coherent beams, and we test the majorization uncertainty relation for three incompatible observables using the prepared mixed states. The experimental results show that the direct sum majorization uncertainty relations are tight and optimal for general mixed systems.
We derive an entropic uncertainty relation for generalized positive-operator-valued measure (POVM) measurements via a direct-sum majorization relation using Schur concavity of entropic quantities in a finite-dimensional Hilbert space. Our approach pr ovides a significant improvement of the uncertainty bound compared with previous majorization-based approaches [S. Friendland, V. Gheorghiu and G. Gour, Phys. Rev. Lett. 111, 230401 (2013); A. E. Rastegin and K. .Zyczkowski, J. Phys. A, 49, 355301 (2016)], particularly by extending the direct-sum majorization relation first introduced in [L. Rudnicki, Z. Pucha{l}a and K. .{Z}yczkowski, Phys. Rev. A 89, 052115 (2014)]. We illustrate the usefulness of our uncertainty relations by considering a pair of qubit observables in a two-dimensional system and randomly chosen unsharp observables in a three-dimensional system. We also demonstrate that our bound tends to be stronger than the generalized Maassen--Uffink bound with an increase in the unsharpness effect. Furthermore, we extend our approach to the case of multiple POVM measurements, thus making it possible to establish entropic uncertainty relations involving more than two observables.
One unique feature of quantum mechanics is the Heisenberg uncertainty principle, which states that the outcomes of two incompatible measurements cannot simultaneously achieve arbitrary precision. In an information-theoretic context of quantum informa tion, the uncertainty principle can be formulated as entropic uncertainty relations with two measurements for a quantum bit (qubit) in two-dimensional system. New entropic uncertainty relations are studied for a higher-dimensional quantum state with multiple measurements, the uncertainty bounds can be tighter than that expected from two measurements settings and cannot result from qubits system with or without a quantum memory. Here we report the first room-temperature experimental testing of the entropic uncertainty relations with three measurements in a natural three-dimensional solid-state system: the nitrogen-vacancy center in pure diamond. The experimental results confirm the entropic uncertainty relations for multiple measurements. Our result represents a more precise demonstrating of the fundamental uncertainty principle of quantum mechanics.
We prove that a beam splitter, one of the most common optical components, fulfills several classes of majorization relations, which govern the amount of quantum entanglement that it can generate. First, we show that the state resulting from k photons impinging on a beam splitter majorizes the corresponding state with any larger photon number k>k, implying that the entanglement monotonically grows with k. Then, we examine parametric infinitesimal majorization relations as a function of the beam-splitter transmittance, and find that there exists a parameter region where majorization is again fulfilled, implying a monotonic increase of entanglement by moving towards a balanced beam splitter. We also identify regions with a majorization default, where the output states become incomparable. In this latter situation, we find examples where catalysis may nevertheless be used in order to recover majorization. The catalyst states can be as simple as a path-entangled single-photon state or a two-mode vacuum squeezed state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا