ﻻ يوجد ملخص باللغة العربية
X-ray absorption spectroscopy is a premier element-specific technique for materials characterization. Specifically, the x-ray absorption near-edge structure (XANES) encodes important information about the local chemical environment of an absorbing atom, including coordination number, symmetry, and oxidation state. Interpreting XANES spectra is a key step towards understanding the structural and electronic properties of materials, and as such, extracting structural and electronic descriptors from XANES spectra is akin to solving a challenging inverse problem. Existing methods rely on empirical fingerprints, which are often qualitative or semiquantitative and not transferable. In this paper, we present a machine learning-based approach, which is capable of classifying the local coordination environments of the absorbing atom from simulated K-edge XANES spectra. The machine learning classifiers can learn important spectral features in a broad energy range without human bias and once trained, can make predictions on the fly. The robustness and fidelity of the machine learning method are demonstrated by an average 86% accuracy across the wide chemical space of oxides in eight 3d transition-metal families. We found that spectral features beyond the preedge region play an important role in the local structure classification problem especially for the late 3d transition-metal elements.
The advent of massive data repositories has propelled machine learning techniques to the front lines of many scientific fields, and exploring new frontiers by leveraging the predictive power of machine learning will greatly accelerate big data-assist
Traditionally, phase transitions are explored using a combination of macroscopic functional characterization and scattering techniques, providing insight into average properties and symmetries of the lattice but local atomic level mechanisms during p
Inelastic losses are crucial to a quantitative analysis of x-ray absorption spectra. However, current treatments are semi-phenomenological in nature. Here a first-principles, many-pole generalization of the plasmon-pole model is developed for improve
With the examples of the C $K$-edge in graphite and the B $K$-edge in hexagonal BN, we demonstrate the impact of vibrational coupling and lattice distortions on the X-ray absorption near-edge structure (XANES) in 2D layered materials. Theoretical XAN
We report the development of XASdb, a large database of computed reference X-ray absorption spectra (XAS), and a novel Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 300,000 K-ed