ﻻ يوجد ملخص باللغة العربية
Neutral current single pion production induced by neutrinos and antineutrinos on nucleon targets has been investigated in manifestly relativistic baryon chiral perturbation theory with explicit $Delta(1232)$ degrees of freedom up to $mathcal{O}(p^3)$. At low energies, where chiral perturbation theory is applicable, the total cross sections for the different reaction channels exhibit a sizable non-resonant contribution, which is not present in event generators of broad use in neutrino oscillation and cross section experiments such as GENIE and NuWro.
Weak pion production off the nucleon at low energies has been systematically investigated in manifestly relativistic baryon chiral perturbation theory with explicit inclusion of the $Delta$(1232) resonance. Most of the involved low-energy constants h
Pion electro- and photoproduction off the nucleon close to threshold is studied in covariant baryon chiral perturbation theory at O($p^3$) in the extended-on-mass-shell scheme, with the explicit inclusion of the $Delta(1232)$ resonance. The relevant
Employing the covariant baryon chiral perturbation theory, we calculate the leading and next-to-leading order two-pion exchange (TPE) contributions to $NN$ interaction up to order $O(p^3)$. We compare the so-obtained $NN$ phase shifts with $2leq Lleq
The weak kaon production off the nucleon induced by neutrinos is studied at the low and intermediate energies of interest for some ongoing and future neutrino oscillation experiments. This process is also potentially important for the analysis of pro
We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinber