ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-separatrix Layers Induced by Ballooning Instability in Near-Earth Magnetotail

99   0   0.0 ( 0 )
 نشر من قبل Ping Zhu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic reconnection processes in the near-Earth magnetotail can be highly 3-dimensional (3D) in geometry and dynamics, even though the magnetotail configuration itself is nearly two dimensional due to the symmetry in the dusk-dawn direction. Such reconnection processes can be induced by the 3D dynamics of nonlinear ballooning instability. In this work, we explore the global 3D geometry of the reconnection process induced by ballooning instability in the near-Earth magnetotail by examining the distribution of quasi-separatrix layers associated with plasmoid formation in the entire 3D domain of magnetotail configuration, using an algorithm previously developed in context of solar physics. The 3D distribution of quasi-separatrix layers (QSLs) as well as their evolution directly follows the plasmoid formation during the nonlinear development of ballooning instability in both time and space. Such a close correlation demonstrates a strong coupling between the ballooning and the corresponding reconnection processes. It further confirms the intrinsic 3D nature of the ballooning-induced plasmoid formation and reconnection processes, in both geometry and dynamics. In addition, the reconstruction of the 3D QSL geometry may provide an alternative means for identifying the location and timing of 3D reconnection sites in magnetotail from both numerical simulations and satellite observations.



قيم البحث

اقرأ أيضاً

We report for the first time the intrinsically three-dimensional (3D) geometry of the magnetic reconnection process induced by ballooning instability in a generalized Harris sheet. The spatial distribution and structure of the quasi-separatrix layers , as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a 3D geometry, which is irreducible to that of any two-dimensional reconnection process. Such a finding provides a new perspective to the long-standing controversy over the substorm onset problem, and elucidates the combined roles of reconnection and ballooning instabilities. It also connects to the universal presence of 3D reconnection processes previously discovered in various natural and laboratory plasmas.
Persistent plasma upflows were observed with Hinodes EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern which is present in the AR for several days. We propose a scenario in which upflows are observed provided a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and for as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs, in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support to the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but it is also responsible for a continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nanc{c}ay Radio Heliograph.
The ion-sputtering (IS) process is active in many planetary environments in the Solar System where plasma precipitates directly on the surface (for instance, Mercury, Moon, Europa). In particular, solar-wind sputtering is one of the most important ag ents for the surface erosion of a Near-Earth Object (NEO), acting together with other surface release processes, such as Photon Stimulated Desorption (PSD), Thermal Desorption (TD) and Micrometeoroid Impact Vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (Sputtered High-Energy Atoms - SHEA) identifies the IS process. SHEA easily escape from the NEO, due to NEOs extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the bodys present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze the processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason a new space weathering model (Space Weathering on NEO - SPAWN), is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed
The Earths magnetotail is characterized by stretched magnetic field lines. Energetic particles are effectively scattered due to the field-line curvature, which then leads to isotropization of energetic particle distributions and particle precipitatio n to the Earths atmosphere. Measurements of these precipitation at low-altitude spacecraft are thus often used to remotely probe the magnetotail current sheet configuration. This configuration may include spatially localized maxima of the curvature radius at equator (due to localized humps of the equatorial magnetic field magnitude) that reduce the energetic particle scattering and precipitation. Therefore, the measured precipitation patterns are related to the spatial distribution of the equatorial curvature radius that is determined by the magnetotail current sheet configuration. In this study, we show that, contrary to previous thoughts, the magnetic field line configuration with the localized curvature radius maximum can actually enhance the scattering and subsequent precipitation. The spatially localized magnetic field dipolarization (magnetic field humps) can significantly curve magnetic field lines far from the equator and create off-equatorial minima in the curvature radius. Scattering of energetic particles in these off-equatorial regions alters the scattering (and precipitation) patterns, which has not been studied yet. We discuss our results in the context of remote-sensing the magnetotail current sheet configuration with low-altitude spacecraft measurements.
344 - I. S. Dmitrienko 2013
FMS modes are studied in the model of the magnetotail as a cylinder with plasma sheet. The presence of the plasma sheet leads to a significant modification of the modes existing in the magnetotail in the form of a cylinder with no plasma sheet. Azimu thal scales of the FMS modes differ significantly between the lobes and the plasma sheet. The azimuthal scale in the plasma sheet is much smaller than that in the magnetotail lobes. FMS waves with certain parameters are strongly reflected from the boundary between the lobes and the plasma sheet and are very weak in the plasma sheet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا