ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Long-Running Political Phenomena on Social Media

80   0   0.0 ( 0 )
 نشر من قبل Emre Calisir
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social media provides many opportunities to monitor and evaluate political phenomena such as referendums and elections. In this study, we propose a set of approaches to analyze long-running political events on social media with a real-world experiment: the debate about Brexit, i.e., the process through which the United Kingdom activated the option of leaving the European Union. We address the following research questions: Could Twitter-based stance classification be used to demonstrate public stance with respect to political events? What is the most efficient and comprehensive approach to measuring the impact of politicians on social media? Which of the polarized sides of the debate is more responsive to politician messages and the main issues of the Brexit process? What is the share of bot accounts in the Brexit discussion and which side are they for? By combining the user stance classification, topic discovery, sentiment analysis, and bot detection, we show that it is possible to obtain useful insights about political phenomena from social media data. We are able to detect relevant topics in the discussions, such as the demand for a new referendum, and to understand the position of social media users with respect to the different topics in the debate. Our comparative and temporal analysis of political accounts can detect the critical periods of the Brexit process and the impact they have on the debate.



قيم البحث

اقرأ أيضاً

Psychological, political, cultural, and even societal factors are entangled in the reasoning and decision-making process towards vaccination, rendering vaccine hesitancy a complex issue. Here, administering a series of surveys via a Facebook-hosted a pplication, we study the worldviews of people that Liked supportive or vaccine resilient Facebook Pages. In particular, we assess differences in political viewpoints, moral values, personality traits, and general interests, finding that those sceptical about vaccination, appear to trust less the government, are less agreeable, while they are emphasising more on anti-authoritarian values. Exploring the differences in moral narratives as expressed in the linguistic descriptions of the Facebook Pages, we see that pages that defend vaccines prioritise the value of the family while the vaccine hesitancy pages are focusing on the value of freedom. Finally, creating embeddings based on the health-related likes on Facebook Pages, we explore common, latent interests of vaccine-hesitant people, showing a strong preference for natural cures. This exploratory analysis aims at exploring the potentials of a social media platform to act as a sensing tool, providing researchers and policymakers with insights drawn from the digital traces, that can help design communication campaigns that build confidence, based on the values that also appeal to the socio-moral criteria of people.
Social media platforms attempting to curb abuse and misinformation have been accused of political bias. We deploy neutral social bots who start following different news sources on Twitter, and track them to probe distinct biases emerging from platfor m mechanisms versus user interactions. We find no strong or consistent evidence of political bias in the news feed. Despite this, the news and information to which U.S. Twitter users are exposed depend strongly on the political leaning of their early connections. The interactions of conservative accounts are skewed toward the right, whereas liberal accounts are exposed to moderate content shifting their experience toward the political center. Partisan accounts, especially conservative ones, tend to receive more followers and follow more automated accounts. Conservative accounts also find themselves in denser communities and are exposed to more low-credibility content.
Parody is a figurative device used to imitate an entity for comedic or critical purposes and represents a widespread phenomenon in social media through many popular parody accounts. In this paper, we present the first computational study of parody. W e introduce a new publicly available data set of tweets from real politicians and their corresponding parody accounts. We run a battery of supervised machine learning models for automatically detecting parody tweets with an emphasis on robustness by testing on tweets from accounts unseen in training, across different genders and across countries. Our results show that political parody tweets can be predicted with an accuracy up to 90%. Finally, we identify the markers of parody through a linguistic analysis. Beyond research in linguistics and political communication, accurately and automatically detecting parody is important to improving fact checking for journalists and analytics such as sentiment analysis through filtering out parodical utterances.
198 - Elise Jing , Yong-Yeol Ahn 2021
The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individu al behaviors and divergent policy adoption across regions. Here, to better understand such divide, we characterize and compare the pandemic narratives of the Democratic and Republican politicians on social media using novel computational methods including computational framing analysis and semantic role analysis. By analyzing tweets from the politicians in the U.S., including the president, members of Congress, and state governors, we systematically uncover the contrasting narratives in terms of topics, frames, and agents that shape their narratives. We found that the Democrats narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. By using contrasting framing and semantic roles, the Democrats emphasize the governments role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Both parties narratives also include shout-outs to their followers and blaming of the other party. Our findings concretely expose the gaps in the elusive consensus between the two parties. Our methodologies may be applied to computationally study narratives in various domains.
Fashion is a multi-billion dollar industry with social and economic implications worldwide. To gain popularity, brands want to be represented by the top popular models. As new faces are selected using stringent (and often criticized) aesthetic criter ia, emph{a priori} predictions are made difficult by information cascades and other fundamental trend-setting mechanisms. However, the increasing usage of social media within and without the industry may be affecting this traditional system. We therefore seek to understand the ingredients of success of fashion models in the age of Instagram. Combining data from a comprehensive online fashion database and the popular mobile image-sharing platform, we apply a machine learning framework to predict the tenure of a cohort of new faces for the 2015 Spring,/,Summer season throughout the subsequent 2015-16 Fall,/,Winter season. Our framework successfully predicts most of the new popular models who appeared in 2015. In particular, we find that a strong social media presence may be more important than being under contract with a top agency, or than the aesthetic standards sought after by the industry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا