ﻻ يوجد ملخص باللغة العربية
The DArk Matter Particle Explorer (DAMPE) developed in China was designed to search for evidence of dark matter particles by observing primary cosmic rays and gamma rays in the energy range from 5 GeV to 10 TeV. Since its launch in December 2015, a large quantity of data has been recorded. With the data set acquired during more than a year of operation in space, a precise time-dependent calibration for the energy measured by the BGO ECAL has been developed. In this report, the instrumentation and development of the BGO Electromagnetic Calorimeter (BGO ECAL) are briefly described. The calibration on orbit, including that of the pedestal, attenuation length, minimum ionizing particle peak, and dynode ratio, is discussed, and additional details about the calibration methods and performance in space are presented.
The DAMPE (DArk Matter Particle Explorer) is a scientific satellite being developed in China, aimed at cosmic ray study, gamma ray astronomy, and searching for the clue of dark matter particles, with a planned mission period of more than 3 years and
This paper is about a study on the response of the BGO calorimeter of DAMPE experiment. Four elements in Cosmic Ray nuclei are used as sources for this analysis. A feature resulting from the geomagnetic cutoff exhibits in the energy spectrum, both in
An imaging calorimeter has been designed and is being built for the PAMELA satellite-borne experiment. The physics goals of the experiment are the measurement of the flux of antiprotons, positrons and light isotopes in the cosmic radiation. The cal
X-ray calorimeters routinely achieve very high spectral resolution, typically a few eV full width at half maximum (FWHM). Measurements of calorimeter line shapes are usually dominated by the natural linewidth of most laboratory calibration sources. T
DArk Matter Particle Explorer (DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 GeV to 10 TeV and hundreds of TeV for nuclei. This paper provides a m