ﻻ يوجد ملخص باللغة العربية
Measurements made by the ALICE Collaboration of single- and two-particle distributions in high-energy pp and p-Pb collisions are used to characterize the interactions in small collision systems, tune models of particle production in QCD, and serve as a baseline for heavy-ion observables. The measurements of charged-particle multiplicity density, $langle dN_{ch}/detarangle$, and multiplicity distributions are shown in pp and p-Pb collisions, including data from the top center-of-mass energy achieved at the Large Hadron Collider (LHC), $sqrt{s}$ = 13 TeV. Two-particle angular correlations in p-Pb collisions are studied in detail to investigate long-range correlations in pseudorapidity which are reminiscent of structures previously thought unique to heavy-ion collisions.
Correlations between particles separated by several units of pseudorapidity were discovered in high-multiplicity pp and p-Pb collisions at the LHC. These long-range structures observed in two-particle correlation functions are reminiscent of features
One of the key results of the LHC Run 1 was the observation of an enhanced production of strange particles in high multiplicity pp and p--Pb collisions at $sqrt{s_mathrm{NN}}$ = 7 and 5.02 TeV, respectively. The strangeness enhancement is investigate
It is now well established that jet modification is a multistage effect; hence a single model alone cannot describe all facets of jet modification. The JETSCAPE framework is a multistage framework that uses several modules to simulate different stage
In a framework of a semi-analytic model with longitudinally extended strings of fluctuating end-points, we demonstrate that the rapidity spectra and two-particle correlations in collisions of Pb-Pb, p-Pb, and p-p at the energies of the Large Hadron C
Azimuthal particle correlations have been extensively studied in the past at various collider energies in p-p, p-A, and A-A collisions. Hadron-correlation measurements in heavy-ion collisions have mainly focused on studies of collective (flow) effect