ﻻ يوجد ملخص باللغة العربية
Ultra-high-energy cosmic rays (UHECRs) are known to come from outside of our Galaxy, but their origin still remains unknown. The Telescope Array (TA) experiment recently identified a high concentration in the arrival directions of UHECRs with energies above $5.7 times 10^{19} eV$, called hotspot. We here report the presence of filaments of galaxies, connected to the Virgo Cluster, on the sky around the hotspot, and a statistically significant correlation between hotspot events and the filaments. With 5-year TA data, the maximum significance of binomial statistics for the correlation is estimated to be 6.1 $sigma$ at correlation angle 3.4 degree. The probability that the above significance appears by chance is $sim 2.0 times 10^{-8}$ (5.6 $sigma$). Based on this finding, we suggest a model for the origin of TA hotspot UHECRs; they are produced at sources in the Virgo Cluster, and escape to and propagate along filaments, before they are scattered toward us. This picture requires the filament magnetic fields of strength $gtrsim 20$ nG, which need to be confirmed in future observations.
While there is some level of consensus on a Galactic origin of cosmic rays up to the knee ($E_{k}sim 3times 10^{15}$ eV) and on an extragalactic origin of cosmic rays with energy above $sim 10^{19}$ eV, the debate on the genesis of cosmic rays in the
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi
The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-l
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Flys Eye and the Southern Auger Observatory. The current results are somewhat contra
Arrival directions of ultra-high energy cosmic rays from the direction of ten brightest radio sources lying within 50 Mpc from our Galaxy were studied by using recent models of the largescale Galactic magnetic field. A detailed study, where also smal