ﻻ يوجد ملخص باللغة العربية
In formal synthesis of reactive systems an implementation of a system is automatically constructed from its formal specification. The great advantage of synthesis is that the resulting implementation is correct by construction; therefore there is no need for manual programming and tedious debugging tasks. Developers remain, nevertheless, hesitant to using automatic synthesis tools and still favor manually writing code. A common argument against synthesis is that the resulting implementation does not always give a clear picture on what decisions were made during the synthesis process. The outcome of synthesis tools is mostly unreadable and hinders the developer from understanding the functionality of the resulting implementation. Many attempts have been made in the last years to make the synthesis process more transparent to users. Either by structuring the outcome of synthesis tools or by providing additional automated support to help users with the specification process. In this paper we discuss the challenges in writing specifications for reactive systems and give a survey on what tools have been developed to guide users in specifying reactive systems and understanding the outcome of synthesis tools.
This paper proposes a new logic RoCTL* to model robustness in concurrent systems. RoCTL* extends CTL* with the addition of Obligatory and Robustly operators, which quantify over failure-free paths and paths with one more failure respectively. We pres
In this report we focus on some aspects related to modeling and formal verification of embedded systems. Many models have been proposed to represent embedded systems. These models encompass a broad range of styles, characteristics, and application do
We propose a way of reasoning about minimal and maximal values of the weights of transitions in a weighted transition system (WTS). This perspective induces a notion of bisimulation that is coarser than the classic bisimulation: it relates states tha
In this paper, we investigate the module-checking problem of pushdown multi-agent systems (PMS) against ATL and ATL* specifications. We establish that for ATL, module checking of PMS is 2EXPTIME-complete, which is the same complexity as pushdown modu
This volume contains the proceedings of the First Workshop on Logics and Model-checking for self-* systems (MOD* 2014). The worshop took place in Bertinoro, Italy, on 12th of September 2014, and was a satellite event of iFM 2014 (the 11th Internation