ترغب بنشر مسار تعليمي؟ اضغط هنا

Elimination of All Bad Local Minima in Deep Learning

90   0   0.0 ( 0 )
 نشر من قبل Kenji Kawaguchi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we theoretically prove that adding one special neuron per output unit eliminates all suboptimal local minima of any deep neural network, for multi-class classification, binary classification, and regression with an arbitrary loss function, under practical assumptions. At every local minimum of any deep neural network with these added neurons, the set of parameters of the original neural network (without added neurons) is guaranteed to be a global minimum of the original neural network. The effects of the added neurons are proven to automatically vanish at every local minimum. Moreover, we provide a novel theoretical characterization of a failure mode of eliminating suboptimal local minima via an additional theorem and several examples. This paper also introduces a novel proof technique based on the perturbable gradient basis (PGB) necessary condition of local minima, which provides new insight into the elimination of local minima and is applicable to analyze various models and transformations of objective functions beyond the elimination of local minima.



قيم البحث

اقرأ أيضاً

In this paper, we analyze the effects of depth and width on the quality of local minima, without strong over-parameterization and simplification assumptions in the literature. Without any simplification assumption, for deep nonlinear neural networks with the squared loss, we theoretically show that the quality of local minima tends to improve towards the global minimum value as depth and width increase. Furthermore, with a locally-induced structure on deep nonlinear neural networks, the values of local minima of neural networks are theoretically proven to be no worse than the globally optimal values of corresponding classical machine learning models. We empirically support our theoretical observation with a synthetic dataset as well as MNIST, CIFAR-10 and SVHN datasets. When compared to previous studies with strong over-parameterization assumptions, the results in this paper do not require over-parameterization, and instead show the gradual effects of over-parameterization as consequences of general results.
We formally study how ensemble of deep learning models can improve test accuracy, and how the superior performance of ensemble can be distilled into a single model using knowledge distillation. We consider the challenging case where the ensemble is s imply an average of the outputs of a few independently trained neural networks with the SAME architecture, trained using the SAME algorithm on the SAME data set, and they only differ by the random seeds used in the initialization. We empirically show that ensemble/knowledge distillation in deep learning works very differently from traditional learning theory, especially differently from ensemble of random feature mappings or the neural-tangent-kernel feature mappings, and is potentially out of the scope of existing theorems. Thus, to properly understand ensemble and knowledge distillation in deep learning, we develop a theory showing that when data has a structure we refer to as multi-view, then ensemble of independently trained neural networks can provably improve test accuracy, and such superior test accuracy can also be provably distilled into a single model by training a single model to match the output of the ensemble instead of the true label. Our result sheds light on how ensemble works in deep learning in a way that is completely different from traditional theorems, and how the dark knowledge is hidden in the outputs of the ensemble -- that can be used in knowledge distillation -- comparing to the true data labels. In the end, we prove that self-distillation can also be viewed as implicitly combining ensemble and knowledge distillation to improve test accuracy.
Despite the empirical success of using Adversarial Training to defend deep learning models against adversarial perturbations, so far, it still remains rather unclear what the principles are behind the existence of adversarial perturbations, and what adversarial training does to the neural network to remove them. In this paper, we present a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network; and more importantly, one of the goals of adversarial training is to remove such mixtures to purify hidden weights. We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly initialized gradient descent indeed satisfies this principle. Technically, we give, to the best of our knowledge, the first result proving that the following two can hold simultaneously for training a neural network with ReLU activation. (1) Training over the original data is indeed non-robust to small adversarial perturbations of some radius. (2) Adversarial training, even with an empirical perturbation algorithm such as FGM, can in fact be provably robust against ANY perturbations of the same radius. Finally, we also prove a complexity lower bound, showing that low complexity models such as linear classifiers, low-degree polynomials, or even the neural tangent kernel for this network, CANNOT defend against perturbations of this same radius, no matter what algorithms are used to train them.
In this paper, we prove that depth with nonlinearity creates no bad local minima in a type of arbitrarily deep ResNets with arbitrary nonlinear activation functions, in the sense that the values of all local minima are no worse than the global minimu m value of corresponding classical machine-learning models, and are guaranteed to further improve via residual representations. As a result, this paper provides an affirmative answer to an open question stated in a paper in the conference on Neural Information Processing Systems 2018. This paper advances the optimization theory of deep learning only for ResNets and not for other network architectures.
Networks of spiking neurons and Winner-Take-All spiking circuits (WTA-SNNs) can detect information encoded in spatio-temporal multi-valued events. These are described by the timing of events of interest, e.g., clicks, as well as by categorical numeri cal values assigned to each event, e.g., like or dislike. Other use cases include object recognition from data collected by neuromorphic cameras, which produce, for each pixel, signed bits at the times of sufficiently large brightness variations. Existing schemes for training WTA-SNNs are limited to rate-encoding solutions, and are hence able to detect only spatial patterns. Developing more general training algorithms for arbitrary WTA-SNNs inherits the challenges of training (binary) Spiking Neural Networks (SNNs). These amount, most notably, to the non-differentiability of threshold functions, to the recurrent behavior of spiking neural models, and to the difficulty of implementing backpropagation in neuromorphic hardware. In this paper, we develop a variational online local training rule for WTA-SNNs, referred to as VOWEL, that leverages only local pre- and post-synaptic information for visible circuits, and an additional common reward signal for hidden circuits. The method is based on probabilistic generalized linear neural models, control variates, and variational regularization. Experimental results on real-world neuromorphic datasets with multi-valued events demonstrate the advantages of WTA-SNNs over conventional binary SNNs trained with state-of-the-art methods, especially in the presence of limited computing resources.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا