ﻻ يوجد ملخص باللغة العربية
We investigate the ground-state phase diagram of the frustrated transverse field Ising (TFI) model on the checkerboard lattice (CL), which consists of N{e}el, collinear, quantum paramagnet and plaquette-valence bond solid (VBS) phases. We implement a numerical simulation that is based on the recently developed unconstrained tree tensor network (TTN) ansatz, which systematically improves the accuracy over the conventional methods as it exploits the internal gauge selections. At the highly frustrated region ($J_2=J_1$), we observe a second order phase transition from plaquette-VBS state to paramagnet phase at the critical magnetic field, $Gamma_{c}=0.28$, with the associated critical exponents $ u=1$ and $gammasimeq0.4$, which are obtained within the finite size scaling analysis on different lattice sizes $N=4times 4, 6times 6, 8times8$. The stability of plaquette-VBS phase at low magnetic fields is examined by spin-spin correlation function, which verifies the presence of plaquette-VBS at $J_2=J_1$ and rules out the existence of a N{e}el phase. In addition, our numerical results suggest that the transition from N{e}el (for $J_2<J_1$) to plaquette-VBS phase is a deconfined phase transition. Moreover, we introduce a mapping, which renders the low-energy effective theory of TFI on CL to be the same model on $J_1-J_2$ square lattice (SL). We show that the plaquette-VBS phase of the highly frustrated point $J_2=J_1$ on CL is mapped to the emergent string-VBS phase on SL at $J_2=0.5J_1$.
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge
We analyze and discuss convergence properties of a numerically exact algorithm tailored to study the dynamics of interacting two-dimensional lattice systems. The method is based on the application of the time-dependent variational principle in a mani
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phas
We consider the scaling behavior of thermodynamic quantities in the one-dimensional transverse-field Ising model near its quantum critical point (QCP). Our study has been motivated by the question about the thermodynamical signatures of this paradigm
We have studied the phase diagram and entanglement of the one dimensional Ising model with Dzyaloshinskii-Moriya (DM) interaction. We have applied the quantum renormalization group (QRG) approach to get the stable fixed points, critical point and the