ﻻ يوجد ملخص باللغة العربية
The Dirac equation is used to provide a relativistic calculation of the binding energy of a hydrogen-like atom confined within a penetrable spherical barrier. We take the potential to be Coulombic within the barrier and constant outside the barrier. Binding energies are derived for the ground state of hydrogen for various barrier heights and confining radii. In addition, it is shown that without the introduction of the principle quantum number $n$, all energy states of the confined relativistic hydrogen atom, determined by a single quantum number $k$, transfer into the known energy states of the free relativistic hydrogen atom as the radius of confinement becomes large.
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of th
The relativistic theory of above-threshold ionization (ATI) of hydrogen-like atoms in ultrastrong radiation fields, taking into account the photoelectron induced rescattering in the continuum spectrum is developed. It is shown that the contribution o
We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunnelling leads to a residual sensitivity to the atom dynamics hence requiring large depths (50 to $100 E_r$ for
We present a design for an atomic synchrotron consisting of 40 hybrid magnetic hexapole lenses arranged in a circle. We show that for realistic parameters, hydrogen atoms with a velocity up to 600 m/s can be stored in a 1-meter diameter ring, which i
Cosmological $N$-body simulations are typically purely run with particles using Newtonian equations of motion. However, such simulations can be made fully consistent with general relativity using a well-defined prescription. Here, we extend the forma