ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing many-body localization lengths via non-perturbative construction of local integrals of motion

112   0   0.0 ( 0 )
 نشر من قبل Pai Peng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many-body localization (MBL), characterized by the absence of thermalization and the violation of conventional thermodynamics, has elicited much interest both as a fundamental physical phenomenon and for practical applications in quantum information. A phenomenological model, which describes the system using a complete set of local integrals of motion (LIOMs), provides a powerful tool to understand MBL, but can be usually only computed approximately. Here we explicitly compute a complete set of LIOMs with a non-perturbative approach, by maximizing the overlap between LIOMs and physical spin operators in real space. The set of LIOMs satisfies the desired exponential decay of weight of LIOMs in real-space. This LIOM construction enables a direct mapping from the real space Hamiltonian to the phenomenological model and thus enables studying the localized Hamiltonian and the system dynamics. We can thus study and compare the localization lengths extracted from the LIOM weights, their interactions, and dephasing dynamics, revealing interesting aspects of many-body localization. Our scheme is immune to accidental resonances and can be applied even at phase transition point, providing a novel tool to study the microscopic features of the phenomenological model of MBL.



قيم البحث

اقرأ أيضاً

We study the many body localization (MBL) transition for interacting fermions subject to quasiperiodic potentials by constructing the local integrals of motion (LIOMs) in the MBL phase as time-averaged local operators. We study numerically how these time-averaged operators evolve across the MBL transition. We find that the norm of such time-averaged operators drops discontinuously to zero across the transition; as we discuss, this implies that LIOMs abruptly become unstable at some critical localization length of order unity. We analyze the LIOMs using hydrodynamic projections and isolating the part of the operator that is associated with interactions. Equipped with this data we perform a finite-size scaling analysis of the quasiperiodic MBL transition. Our results suggest that the quasiperiodic MBL transition occurs at considerably stronger quasiperiodic modulations, and has a larger correlation-length critical exponent, than previous studies had found.
We discuss the problem of localization in two dimensional electron systems in the quantum Hall (single Landau level) regime. After briefly summarizing the well-studied problem of Anderson localization in the non-interacting case, we concentrate on th e problem of disorder induced many-body localization (MBL) in the presence of electron-electron interactions using numerical exact diagonalization and eigenvalue spacing statistics as a function of system size. We provide evidence showing that MBL is not attainable in a single Landau level with short range (white noise) disorder in the thermodynamic limit. We then study the interplay of topology and localization, by contrasting the behavior of topological and nontopological subbands arising from a single Landau level in two models - (i) a pair of extremely flat Hofstadter bands with an optimally chosen periodic potential, and (ii) a Landau level with a split-off nontopological impurity band. Both models provide convincing evidence for the strong effect of topology on the feasibility of many-body localization as well as slow dynamics starting from a nonequilibrium state with charge imbalance.
Characterizing the many-body localization (MBL) transition in strongly disordered and interacting quantum systems is an important issue in the field of condensed matter physics. We study the single particle Greens functions for a disordered interacti ng system in one dimension using exact diagnonalization in the infinite temperature limit. We provide strong evidence that the typical values of the local density of states and the scattering rate, evaluated using the computed eigenstate Greens functions and self energies, can be used to track the delocalization to MBL transition. In the delocalized phase, the typical values of the local density of states and the scattering rate are of the order of the corresponding average values while in the MBL phase, the typical values for both the quantities become vanishingly small. The probability distribution functions of the local density of states and the scattering rate are broad log-normal distributions in the delocalized phase while the distributions become very narrow and sharply peaked close to zero in the MBL phase. We also study the eigenstate Greens function for all the many-body eigenstates and demonstrate that both, the energy resolved typical scattering rate and the typical local density of states, carry signatures of the many-body mobility edges.
84 - Jae-Ho Han , Ki-Seok Kim 2018
We investigate a many-body localization transition based on a Boltzmann transport theory. Introducing weak localization corrections into a Boltzmann equation, Hershfield and Ambegaokar re-derived the Wolfle-Vollhardt self-consistent equation for the diffusion coefficient [Phys. Rev. B {bf 34}, 2147 (1986)]. We generalize this Boltzmann equation framework, introducing electron-electron interactions into the Hershfield-Ambegaokar Boltzmann transport theory based on the study of Zala-Narozhny-Aleiner [Phys. Rev. B {bf 64}, 214204 (2001)]. Here, not only Altshuler-Aronov corrections but also dephasing effects are taken into account. As a result, we obtain a self-consistent equation for the diffusion coefficient in terms of the disorder strength and temperature, which extends the Wolfle-Vollhardt self-consistent equation in the presence of electron correlations. Solving our self-consistent equation numerically, we find a many-body localization insulator-metal transition, where a metallic phase appears from dephasing effects dominantly instead of renormalization effects at high temperatures. Although this mechanism is consistent with that of recent seminal papers [Ann. Phys. (N. Y). {bf 321}, 1126 (2006); Phys. Rev. Lett. {bf 95}, 206603 (2005)], we find that our three-dimensional metal-insulator transition belongs to the first order transition, which differs from the Anderson metal-insulator transition described by the Wolfle-Vollhardt self-consistent theory. We speculate that a bimodal distribution function for the diffusion coefficient is responsible for this first order phase transition.
We study the eigenstates of a paradigmatic model of many-body localization in the Fock basis constructed out of the natural orbitals. By numerically studying the participation ratio, we identify a sharp crossover between different phases at a disorde r strength close to the disorder strength at which subdiffusive behaviour sets in, significantly below the many-body localization transition. We repeat the analysis in the conventionally used computational basis, and show that many-body localized eigenstates are much stronger localized in the Fock basis constructed out of the natural orbitals than in the computational basis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا