ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Gating Ensemble Network for Noise Robust Multi-Scale Face Restoration

108   0   0.0 ( 0 )
 نشر من قبل Jianxin Lin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face restoration from low resolution and noise is important for applications of face analysis recognition. However, most existing face restoration models omit the multiple scale issues in face restoration problem, which is still not well-solved in research area. In this paper, we propose a Sequential Gating Ensemble Network (SGEN) for multi-scale noise robust face restoration issue. To endow the network with multi-scale representation ability, we first employ the principle of ensemble learning for SGEN network architecture designing. The SGEN aggregates multi-level base-encoders and base-decoders into the network, which enables the network to contain multiple scales of receptive field. Instead of combining these base-en/decoders directly with non-sequential operations, the SGEN takes base-en/decoders from different levels as sequential data. Specifically, it is visualized that SGEN learns to sequentially extract high level information from base-encoders in bottom-up manner and restore low level information from base-decoders in top-down manner. Besides, we propose to realize bottom-up and top-down information combination and selection with Sequential Gating Unit (SGU). The SGU sequentially takes information from two different levels as inputs and decides the output based on one active input. Experiment results on benchmark dataset demonstrate that our SGEN is more effective at multi-scale human face restoration with more image details and less noise than state-of-the-art image restoration models. Further utilizing adversarial training scheme, SGEN also produces more visually preferred results than other models under subjective evaluation.



قيم البحث

اقرأ أيضاً

Recent reference-based face restoration methods have received considerable attention due to their great capability in recovering high-frequency details on real low-quality images. However, most of these methods require a high-quality reference image of the same identity, making them only applicable in limited scenes. To address this issue, this paper suggests a deep face dictionary network (termed as DFDNet) to guide the restoration process of degraded observations. To begin with, we use K-means to generate deep dictionaries for perceptually significant face components (ie, left/right eyes, nose and mouth) from high-quality images. Next, with the degraded input, we match and select the most similar component features from their corresponding dictionaries and transfer the high-quality details to the input via the proposed dictionary feature transfer (DFT) block. In particular, component AdaIN is leveraged to eliminate the style diversity between the input and dictionary features (eg, illumination), and a confidence score is proposed to adaptively fuse the dictionary feature to the input. Finally, multi-scale dictionaries are adopted in a progressive manner to enable the coarse-to-fine restoration. Experiments show that our proposed method can achieve plausible performance in both quantitative and qualitative evaluation, and more importantly, can generate realistic and promising results on real degraded images without requiring an identity-belonging reference. The source code and models are available at url{https://github.com/csxmli2016/DFDNet}.
155 - Jun Wan , Zhihui Lai , Jun Liu 2020
Heatmap regression (HR) has become one of the mainstream approaches for face alignment and has obtained promising results under constrained environments. However, when a face image suffers from large pose variations, heavy occlusions and complicated illuminations, the performances of HR methods degrade greatly due to the low resolutions of the generated landmark heatmaps and the exclusion of important high-order information that can be used to learn more discriminative features. To address the alignment problem for faces with extremely large poses and heavy occlusions, this paper proposes a heatmap subpixel regression (HSR) method and a multi-order cross geometry-aware (MCG) model, which are seamlessly integrated into a novel multi-order high-precision hourglass network (MHHN). The HSR method is proposed to achieve high-precision landmark detection by a well-designed subpixel detection loss (SDL) and subpixel detection technology (SDT). At the same time, the MCG model is able to use the proposed multi-order cross information to learn more discriminative representations for enhancing facial geometric constraints and context information. To the best of our knowledge, this is the first study to explore heatmap subpixel regression for robust and high-precision face alignment. The experimental results from challenging benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in the literature.
215 - Tao Yang 2021
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead t o acceptable results. Existing generative adversarial network (GAN) based methods can produce better results but tend to generate over-smoothed restorations. In this work, we propose a new method by first learning a GAN for high-quality face image generation and embedding it into a U-shaped DNN as a prior decoder, then fine-tuning the GAN prior embedded DNN with a set of synthesized low-quality face images. The GAN blocks are designed to ensure that the latent code and noise input to the GAN can be respectively generated from the deep and shallow features of the DNN, controlling the global face structure, local face details and background of the reconstructed image. The proposed GAN prior embedded network (GPEN) is easy-to-implement, and it can generate visually photo-realistic results. Our experiments demonstrated that the proposed GPEN achieves significantly superior results to state-of-the-art BFR methods both quantitatively and qualitatively, especially for the restoration of severely degraded face images in the wild. The source code and models can be found at https://github.com/yangxy/GPEN.
190 - Xiaoming Li , Ming Liu , Yuting Ye 2018
This paper studies the problem of blind face restoration from an unconstrained blurry, noisy, low-resolution, or compressed image (i.e., degraded observation). For better recovery of fine facial details, we modify the problem setting by taking both t he degraded observation and a high-quality guided image of the same identity as input to our guided face restoration network (GFRNet). However, the degraded observation and guided image generally are different in pose, illumination and expression, thereby making plain CNNs (e.g., U-Net) fail to recover fine and identity-aware facial details. To tackle this issue, our GFRNet model includes both a warping subnetwork (WarpNet) and a reconstruction subnetwork (RecNet). The WarpNet is introduced to predict flow field for warping the guided image to correct pose and expression (i.e., warped guidance), while the RecNet takes the degraded observation and warped guidance as input to produce the restoration result. Due to that the ground-truth flow field is unavailable, landmark loss together with total variation regularization are incorporated to guide the learning of WarpNet. Furthermore, to make the model applicable to blind restoration, our GFRNet is trained on the synthetic data with versatile settings on blur kernel, noise level, downsampling scale factor, and JPEG quality factor. Experiments show that our GFRNet not only performs favorably against the state-of-the-art image and face restoration methods, but also generates visually photo-realistic results on real degraded facial images.
In real-world scenarios, many factors may harm face recognition performance, e.g., large pose, bad illumination,low resolution, blur and noise. To address these challenges, previous efforts usually first restore the low-quality faces to high-quality ones and then perform face recognition. However, most of these methods are stage-wise, which is sub-optimal and deviates from the reality. In this paper, we address all these challenges jointly for unconstrained face recognition. We propose an Multi-Degradation Face Restoration (MDFR) model to restore frontalized high-quality faces from the given low-quality ones under arbitrary facial poses, with three distinct novelties. First, MDFR is a well-designed encoder-decoder architecture which extracts feature representation from an input face image with arbitrary low-quality factors and restores it to a high-quality counterpart. Second, MDFR introduces a pose residual learning strategy along with a 3D-based Pose Normalization Module (PNM), which can perceive the pose gap between the input initial pose and its real-frontal pose to guide the face frontalization. Finally, MDFR can generate frontalized high-quality face images by a single unified network, showing a strong capability of preserving face identity. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of MDFR over state-of-the-art methods on both face frontalization and face restoration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا