ﻻ يوجد ملخص باللغة العربية
In an earlier article together with Carlos DAndrea [BDKSV2017], we described explicit expressions for the coefficients of the order-$d$ polynomial subresultant of $(x-alpha)^m$ and $(x-beta)^n $ with respect to Bernsteins set of polynomials ${(x-alpha)^j(x-beta)^{d-j}, , 0le jle d}$, for $0le d<min{m, n}$. The current paper further develops the study of these structured polynomials and shows that the coefficients of the subresultants of $(x-alpha)^m$ and $(x-beta)^n$ with respect to the monomial basis can be computed in linear arithmetic complexity, which is faster than for arbitrary polynomials. The result is obtained as a consequence of the amazing though seemingly unnoticed fact that these subresultants are scalar multiples of Jacobi polynomials up to an affine change of variables.
The texttt{StronglyStableIdeals} package for textit{Macaulay2} provides a method to compute all saturated strongly stable ideals in a given polynomial ring with a fixed Hilbert polynomial. A description of the main method and auxiliary tools is given.
It is well-known that a connected regular graph is strongly-regular if and only if its adjacency matrix has exactly three eigenvalues. Let $B$ denote an integral square matrix and $langle B rangle$ denote the subring of the full matrix ring generated
The polynomial $f_{2n}(x)=1+x+cdots+x^{2n}$ and its minimizer on the real line $x_{2n}=operatorname{arg,inf} f_{2n}(x)$ for $ninBbb N$ are studied. Results show that $x_{2n}$ exists, is unique, corresponds to $partial_x f_{2n}(x)=0$, and resides on t
Let $p(x)$ be an integer polynomial with $mge 2$ distinct roots $rho_1,ldots,rho_m$ whose multiplicities are $boldsymbol{mu}=(mu_1,ldots,mu_m)$. We define the D-plus discriminant of $p(x)$ to be $D^+(p):= prod_{1le i<jle m}(rho_i-rho_j)^{mu_i+mu_j}$.
Simply put, a sparse polynomial is one whose zero coefficients are not explicitly stored. Such objects are ubiquitous in exact computing, and so naturally we would like to have efficient algorithms to handle them. However, with this compact storage c