ﻻ يوجد ملخص باللغة العربية
It has been suggested that adiabatic energy losses are not effective in stationary jets, where the jet expansion is not associated with net work. Here, we study jet solutions without them, assuming that adiabatic losses are balanced by electron reacceleration. The absence of effective adiabatic losses makes electron advection along the jet an important process, and we solve the electron kinetic equation including that process. We find analytical solutions for the case of conical jets with advection and synchrotron losses. We show that accounting for adiabatic losses in the case of sources showing soft partially self-absorbed spectra with the spectral index of $alpha<0$ in the radio-to-IR regime requires deposition of large amounts of energy at large distances in the jet. On the other hand, such spectra can be accounted for by advection of electrons in the jet. We compare our results to the quiescent spectrum of the blazar Mrk 421. We find its soft radio-IR spectrum can be fitted either by a model without adiabatic losses and advection of electrons or by one with adiabatic losses, but the latter requires injection of a very large power at large distances.
We study the effect of variable jet bulk Lorentz factors, i.e., either jet acceleration or deceleration, on partially synchrotron self-absorbed radio spectra from cores of radio-loud active galactic nuclei and black-hole binaries in the hard state. I
Theoretical models show that the power of relativistic jets of active galactic nuclei depends on the spin and mass of the central supermassive black holes, as well as the accretion. Here we report an analysis of archival observations of a sample of b
We attempt to explain the observed radio and gamma-ray emission produced in the surrounds of black holes by employing a magnetically-dominated accretion flow (MDAF) model and fast magnetic reconnection triggered by turbulence. In earlier work, standa
Multifrequency radio continuum observations (1.4-22 GHz) of a sample of reddened QSOs are presented. We find a high incidence (13/16) of radio spectral properties, such as low frequency turnovers, high frequency spectral breaks or steep power-law slo
A fundamental difference between a neutron star (NS) and a black hole (BH) is the absence of a physical surface in the latter. For this reason, any remaining kinetic energy of the matter accreting onto a BH is advected inside its event horizon. In th