ﻻ يوجد ملخص باللغة العربية
We study the normal bundles of the exceptional sets of isolated simple small singularities in the higher dimension when the Picard group of the exceptional set is $mathbb{Z}$ and the normal bundle of it has some good filtration. In particular, for the exceptional set is a projective space with the split normal bundle, we generalized Nakayama and Andos results to higher dimension. Moreover, we also generalize Laufers results of rationality and embedding dimension to higher dimension.
We investigate maximal exceptional sequences of line bundles on (P^1)^3, i.e. those consisting of 2^r elements. For r=3 we show that they are always full, meaning that they generate the derived category. Everything is done in the discrete setup: Exce
In this paper, we prove that the normal bundle of a general Brill-Noether space curve of degree $d$ and genus $g geq 2$ is stable if and only if $(d,g) otin { (5,2), (6,4) }$. When $gleq1$ and the characteristic of the ground field is zero, it is cl
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
In this paper, we prove a singular version of the Donaldson-Uhlenbeck-Yau theorem over normal projective varieties and normal complex subvarieties of compact Kahler manifolds that are smooth outside a codimension three analytic subset. As a consequen
We compute the symplectic reductions for the action of Sp_2n on several copies of C^2n and for all coregular representations of Sl_2. If it exists we give at least one symplectic resolution for each example. In the case Sl_2 acting on sl_2+C^2 we obt