ﻻ يوجد ملخص باللغة العربية
Let S_n be the nth symmetric group. Given a set of permutations Pi we denote by S_n(Pi) the set of permutations in S_n which avoid Pi in the sense of pattern avoidance. Consider the generating function Q_n(Pi) = sum_pi F_{Des pi} where the sum is over all pi in S_n(Pi) and F_{Des pi} is the fundamental quasisymmetric function corresponding to the descent set of pi. Hamaker, Pawlowski, and Sagan introduced Q_n(Pi) and studied its properties, in particular, finding criteria for when this quasisymmetric function is symmetric or even Schur nonnegative for all n >= 0. The purpose of this paper is to continue their investigation answering some of their questions, proving one of their conjectures, as well as considering other natural questions about Q_n(Pi). In particular we look at Pi of small cardinality, superstandard hooks, partial shuffles, Knuth classes, and a stability property.
Given a set of permutations Pi, let S_n(Pi) denote the set of permutations in the symmetric group S_n that avoid every element of Pi in the sense of pattern avoidance. Given a subset S of {1,...,n-1}, let F_S be the fundamental quasisymmetric functio
Jelinek, Mansour, and Shattuck studied Wilf-equivalence among pairs of patterns of the form ${sigma,tau}$ where $sigma$ is a set partition of size $3$ with at least two blocks. They obtained an upper bound for the number of Wilf-equivalence classes f
The study of pattern containment and avoidance for linear permutations is a well-established area of enumerative combinatorics. A cyclic permutation is the set of all rotations of a linear permutation. Callan initiated the study of permutation avoida
We introduce a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We study pattern avoidance in bounded affine permutations. In particular, we show that if $tau
In this paper, the problem of pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding patterns of length one and two are obtained. Lagrange inversion formula is used to obta