ﻻ يوجد ملخص باللغة العربية
We propose faster methods for unconstrained optimization of emph{structured convex quartics}, which are convex functions of the form begin{equation*} f(x) = c^top x + x^top mathbf{G} x + mathbf{T}[x,x,x] + frac{1}{24} mathopen| mathbf{A} x mathclose|_4^4 end{equation*} for $c in mathbb{R}^d$, $mathbf{G} in mathbb{R}^{d times d}$, $mathbf{T} in mathbb{R}^{d times d times d}$, and $mathbf{A} in mathbb{R}^{n times d}$ such that $mathbf{A}^top mathbf{A} succ 0$. In particular, we show how to achieve an $epsilon$-optimal minimizer for such functions with only $O(n^{1/5}log^{O(1)}(mathcal{Z}/epsilon))$ calls to a gradient oracle and linear system solver, where $mathcal{Z}$ is a problem-dependent parameter. Our work extends recent ideas on efficient tensor methods and higher-order acceleration techniques to develop a descent method for optimizing the relevant quartic functions. As a natural consequence of our method, we achieve an overall cost of $O(n^{1/5}log^{O(1)}(mathcal{Z} / epsilon))$ calls to a gradient oracle and (sparse) linear system solver for the problem of $ell_4$-regression when $mathbf{A}^top mathbf{A} succ 0$, providing additional insight into what may be achieved for general $ell_p$-regression. Our results show the benefit of combining efficient higher-order methods with recent acceleration techniques for improving convergence rates in fundamental convex optimization problems.
One revisits the standard saddle-point method based on conjugate duality for solving convex minimization problems. Our aim is to reduce or remove unnecessary topological restrictions on the constraint set. Dual equalities and characterizations of the
A formula for the sub-differential of the sum of a series of convex functions defined on a Banach space was provided by X. Y. Zheng in 1998. In this paper, besides a slight extension to locally convex spaces of Zhengs results, we provide a formula fo
We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the direc
We introduce Newton-ADMM, a method for fast conic optimization. The basic idea is to view the residuals of consecutive iterates generated by the alternating direction method of multipliers (ADMM) as a set of fixed point equations, and then use a nons
The stochastic Frank-Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity ga