ترغب بنشر مسار تعليمي؟ اضغط هنا

Double ramification cycles with target varieties

111   0   0.0 ( 0 )
 نشر من قبل Rahul Pandharipande
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let X be a nonsingular projective algebraic variety, and let S be a line bundle on X. Let A = (a_1,..., a_n) be a vector of integers. Consider a map f from a pointed curve (C,x_1,...,x_n) to X satisfying the following condition: the line bundle f*(S) has a meromorphic section with zeroes and poles exactly at the marked points x_i with orders prescribed by the integers a_i. A compactification of the space of maps based upon the above condition is given by the moduli space of stable maps to rubber over X. The main result of the paper is an explicit formula (in tautological classes) for the push-forward of the virtual fundamental class of the moduli space of stable maps to rubber over X via the forgetful morphism to the moduli space of stable maps to X. In case X is a point, the result here specializes to Pixtons formula for the double ramification cycle. Applications of the new formula, viewed as calculating double ramification cycles with target X, are given.



قيم البحث

اقرأ أيضاً

Curves of genus g which admit a map to CP1 with specified ramification profile mu over 0 and nu over infinity define a double ramification cycle DR_g(mu,nu) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves. The cycle DR_g(mu,nu) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for DR_g(mu,nu) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hains formula in the compact type case. When mu and nu are both empty, the formula for double ramification cycles expresses the top Chern class lambda_g of the Hodge bundle of the moduli space of stable genus g curves as a push-forward of tautological classes supported on the divisor of nonseparating nodes. Applications to Hodge integral calculations are given.
Motivated by the realizability problem for principal tropical divisors with a fixed ramification profile, we explore the tropical geometry of the double ramification locus in $mathcal{M}_{g,n}$.There are two ways to define a tropical analogue of the double ramification locus: one as a locus of principal divisors, the other as a locus of finite effective ramified covers of a tree. We show that both loci admit a structure of a generalized cone complex in $M_{g,n}^{trop}$, with the latter contained in the former. We prove that the locus of principal divisors has cones of codimension zero in $M_{g,n}^{trop}$, while the locus of ramified covers has the expected codimension $g$. This solves the deformation-theoretic part of the realizability problem for principal divisors, reducing it to the so-called Hurwitz existence problem for covers of a fixed ramification type.
156 - A. Buryak , P. Rossi 2015
In this paper we define a quantization of the Double Ramification Hierarchies of [Bur15b] and [BR14], using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological fie ld theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new $(1+1)$-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.
Let C be a complex curve of genus g, let J(C) be its Jacobian and let R(C) be its tautological ring, that is, the group of algebraic cycles modulo algebraic equivalence. We study the algebraic structure of R(C). In particular, we give a detailed desc ription of all the possibilities that may occur for g<9: we construct convenient basis and we determine the matrices representing the Fourier transform and both intersection and Pontryagin products explicitly. In particular, we estimate the dimension of R(C).
123 - Haoyu Hu 2021
For a constructible etale sheaf on a smooth variety of positive characteristic ramified along an effective divisor, the largest slope in Abbes and Saitos ramification theory of the sheaf gives a divisor with rational coefficients called the conductor divisor. In this article, we prove decreasing properties of the conductor divisor after pull-backs. The main ingredient behind is the construction of etale sheaves with pure ramifications. As applications, we first prove a lower semi-continuity property for conductors of etale sheaves on relative curves in the equal characteristic case, which supplement Deligne and Laumons lower semi-continuity property of Swan conductors and is also an $ell$-adic analogue of Andres semi-continuity result of Poincare-Katz ranks for meromorphic connections on complex relative curves. Secondly, we give a ramification bound for the nearby cycle complex of an etale sheaf ramified along the special fiber of a regular scheme semi-stable over an equal characteristic henselian trait, which extends a main result in a joint work with Teyssier and answers a conjecture of Leal in a geometric situation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا