ﻻ يوجد ملخص باللغة العربية
We study entanglement of Kondo clouds in an open triple quantum dots (OTQDs) system based on the dissipaton equation of motion (DEOM) theory. A comprehensive picture of the long-range entanglement of Kondo clouds is sketched by the spectral functions, spin-spin correlation and dot occupancies of OTQDs. We find that for the configuration (N1,N2,N3) = (1, 0, 1), a conduction electrons peak occurs in the spectral function of intermediate QD in Kondo regime. This peak resulting from the overlapping of the two Kondo clouds forming from between the two peripheral QDs and leads, enhances with decreasing temperature and increasing dot-lead coupling. Both the spin-spin correlations between the two adjacent QDs and the two peripheral QDs owns negative values. It also confirms the physical picuture of the overlapping between left and right Kondo clouds via the intermediate QD. Moreover, the transition of the effective electron occupation and the spectral function of intermediate QD in Kondo regime also indicates the entanglement of Kondo clouds enhancing with decreasing temperature and increasing dot-lead coupling. This investigation will be beneficial to detect the Kondo clouds and to further explore Kondo physics in related experiment setups.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilsons numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and tra
Tunneling in a quantum coherent structure is not restricted to only nearest neighbours. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long range transi
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the