The free surface of a colloidal chiral fluid: waves and instabilities from odd stress and Hall viscosity


الملخص بالإنكليزية

In simple fluids, such as water, invariance under parity and time-reversal symmetry imposes that the rotation of constituent atoms are determined by the flow and that viscous stresses damp motion. Activation of the rotational degrees of freedom of a fluid by spinning its atomic building blocks breaks these constraints and has thus been the subject of fundamental theoretical interest across classical and quantum fluids. However, the creation of a model liquid which isolates chiral hydrodynamic phenomena has remained experimentally elusive. Here we report the creation of a cohesive two-dimensional chiral liquid consisting of millions of spinning colloidal magnets and study its flows. We find that dissipative viscous edge pumping is a key and general mechanism of chiral hydrodynamics, driving uni-directional surface waves and instabilities, with no counterpart in conventional fluids. Spectral measurements of the chiral surface dynamics reveal the presence of Hall viscosity, an experimentally long sought property of chiral fluids. Precise measurements and comparison with theory demonstrate excellent agreement with a minimal but complete chiral hydrodynamic model, paving the way for the exploration of chiral hydrodynamics in experiment.

تحميل البحث