ﻻ يوجد ملخص باللغة العربية
Abstract Applications of nitrogen-vacancy (NV) centers in diamond in quantum technology have attracted considerable attention in recent years. Deterministic generation of ensembles of NV centers can advance the research on quantum sensing, many-body quantum systems, multipartite entanglement and so on. Here we report the complete process of controlled generation of NV centers in diamond as well as their characterisation: growing diamond films through chemical vapor deposition (CVD), ion implantation and spectroscopic characterization of the defect centers using a confocal microscope. A microwave-assisted CVD set-up is presented which we constructed for the preparation of single-crystalline homoepitaxial diamond films. The films were prepared with minimized nitrogen concentration, which is confirmed through photoluminescence measurements. We demonstrate an in situ ultra high vacuum (UHV) implantation and heating process for creation of NV centers using a novel experimental set-up. For the first time hot implantation has been shown which prevents surface charging effects. We do not observe graphitization due to UHV heating. By optimizing the implantation parameters it has been possible to implant NV centers in a precise way. We present large area mapping of the samples to determine the distribution of the centers and describe the characterization of the centers by spectroscopic techniques. Reducing the decoherence caused by environmental noise is of primary importance for many applications in quantum technology. We demonstrate improvement on coherence time T_{2} of the NV spins by suppression of their interaction with the surrounding spin-bath using robust dynamical decoupling sequences.
We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively-charged nitrogen-vacancy (NV$^-$) centres being discussed as a potential laser medium since the 1980s, there have been no
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diam
An efficient atom-photon-interface is a key requirement for the integration of solid-state emitters such as color centers in diamond into quantum technology applications. Just like other solid state emitters, however, their emission into free space i
Nitrogen-vacancy (NV) centers in diamond are promising quantum sensors for their long spin coherence time under ambient conditions. However, their spin resonances are relatively insensitive to non-magnetic parameters such as temperature. A magnetic-n