ﻻ يوجد ملخص باللغة العربية
We introduce a new approach to evaluating entangled quantum networks using information geometry. Quantum computing is powerful because of the enhanced correlations from quantum entanglement. For example, larger entangled networks can enhance quantum key distribution (QKD). Each network we examine is an n-photon quantum state with a degree of entanglement. We analyze such a state within the space of measured data from repeated experiments made by n observers over a set of identically-prepared quantum states -- a quantum state interrogation in the space of measurements. Each observer records a 1 if their detector triggers, otherwise they record a 0. This generates a string of 1s and 0s at each detector, and each observer can define a binary random variable from this sequence. We use a well-known information geometry-based measure of distance that applies to these binary strings of measurement outcomes, and we introduce a generalization of this length to area, volume and higher-dimensional volumes. These geometric equations are defined using the familiar Shannon expression for joint and mutual entropy. We apply our approach to three distinct tripartite quantum states: the GHZ state, the W state, and a separable state P. We generalize a well-known information geometry analysis of a bipartite state to a tripartite state. This approach provides a novel way to characterize quantum states, and it may have favorable scaling with increased number of photons.
We study the skew information-based coherence of quantum states and derive explicit formulas for Werner states and isotropic states in a set of autotensor of mutually unbiased bases (AMUBs). We also give surfaces of skew information-based coherence f
Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. On the one hand, it quantifies the metrological potential of quantum states in quantum-parameter-estimation measurements. On the other hand, it is intrinsically
Recently, there is a growing interest in study quantum mechanics from the information geometry perspective, where a quantum state is depicted with a point in the projective Hilbert space. By taking quantum Fisher information (QFI) as the metric of pr
Binary quantum information can be fault tolerantly encoded in states defined in infinite dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The