ﻻ يوجد ملخص باللغة العربية
Regarding $N$-soliton solutions, the trigonometric type, the hyperbolic type, and the exponential type solutions are well studied. While for the elliptic type solution, we know only the one-soliton solution so far. Using the commutative B{a}cklund transformation, we have succeeded in constructing the KdV static elliptic $N$-soliton solution, which means that we have constructed infinitely many solutions for the $wp$-function type differential equation.
In this article, we construct loop soliton solutions and mixed soliton - loop soliton solution for the Degasperis-Procesi equation. To explore these solutions we adopt the procedure given by Matsuno. By appropriately modifying the $tau$-function give
Symmetries of a differential equations is one of the most important concepts in theory of differential equations and physics. One of the most prominent equations is KdV (Kortwege-de Vries) equation with application in shallow water theory. In this pa
In this paper we show some exact solutions for the general fifth order KdV equation. These solutions are obtained by the extended tanh method.
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is require
We provide a list of explicit eigenfunctions of the trigonometric Calogero-Sutherland Hamiltonian associated to the root system of the exceptional Lie algebra E8. The quantum numbers of these solutions correspond to the first and second order weights of the Lie algebra.