ترغب بنشر مسار تعليمي؟ اضغط هنا

An Enhanced Initial Margin Methodology to Manage Warehoused Credit Risk

84   0   0.0 ( 0 )
 نشر من قبل Lucia Cipolina Kun
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of CVA to cover credit risk is widely spread, but has its limitations. Namely, dealers face the problem of the illiquidity of instruments used for hedging it, hence forced to warehouse credit risk. As a result, dealers tend to offer a limited OTC derivatives market to highly risky counterparties. Consequently, those highly risky entities rarely have access to hedging services precisely when they need them most. In this paper we propose a method to overcome this limitation. We propose to extend the CVA risk-neutral framework to compute an initial margin (IM) specific to each counterparty, which depends on the credit quality of the entity at stake, transforming the effective credit rating of a given netting set to AAA, regardless of the credit rating of the counterparty. By transforming CVA requirement into IM ones, as proposed in this paper, an institution could rely on the existing mechanisms for posting and calling of IM, hence ensuring the operational viability of this new form of managing warehoused risk. The main difference with the currently standard framework is the creation of a Specific Initial Margin, that depends in the credit rating of the counterparty and the characteristics of the netting set in question. In this paper we propose a methodology for such transformation in a sound manner, and hence this method overcomes some of the limitations of the CVA framework.



قيم البحث

اقرأ أيضاً

This work presents a theoretical and empirical evaluation of Anderson-Darling test when the sample size is limited. The test can be applied in order to backtest the risk factors dynamics in the context of Counterparty Credit Risk modelling. We show t he limits of such test when backtesting the distributions of an interest rate model over long time horizons and we propose a modified version of the test that is able to detect more efficiently an underestimation of the models volatility. Finally we provide an empirical application.
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
We propose a novel credit default model that takes into account the impact of macroeconomic information and contagion effect on the defaults of obligors. We use a set-valued Markov chain to model the default process, which is the set of all defaulted obligors in the group. We obtain analytic characterizations for the default process, and use them to derive pricing formulas in explicit forms for synthetic collateralized debt obligations (CDOs). Furthermore, we use market data to calibrate the model and conduct numerical studies on the tranche spreads of CDOs. We find evidence to support that systematic default risk coupled with default contagion could have the leading component of the total default risk.
In Artificial Intelligence, interpreting the results of a Machine Learning technique often termed as a black box is a difficult task. A counterfactual explanation of a particular black box attempts to find the smallest change to the input values that modifies the prediction to a particular output, other than the original one. In this work we formulate the problem of finding a counterfactual explanation as an optimization problem. We propose a new sparsity algorithm which solves the optimization problem, while also maximizing the sparsity of the counterfactual explanation. We apply the sparsity algorithm to provide a simple suggestion to publicly traded companies in order to improve their credit ratings. We validate the sparsity algorithm with a synthetically generated dataset and we further apply it to quarterly financial statements from companies in financial, healthcare and IT sectors of the US market. We provide evidence that the counterfactual explanation can capture the nature of the real statement features that changed between the current quarter and the following quarter when ratings improved. The empirical results show that the higher the rating of a company the greater the effort required to further improve credit rating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا