ﻻ يوجد ملخص باللغة العربية
We consider the problem of computing the joint distribution of order statistics of stochastically independent random variables in one- and two-group models. While recursive formulas for evaluating the joint cumulative distribution function of such order statistics exist in the literature for a longer time, their numerical implementation remains a challenging task. We tackle this task by presenting novel generalizations of known recursions which we utilize to obtain exact results (calculated in rational arithmetic) as well as faithfully rounded results. Finally, some applications in stepwise multiple hypothesis testing are discussed.
Order statistics theory is applied in this paper to probabilistic robust control theory to compute the minimum sample size needed to come up with a reliable estimate of an uncertain quantity under continuity assumption of the related probability dist
We give the distribution of $M_n$, the maximum of a sequence of $n$ observations from a moving average of order 1. Solutions are first given in terms of repeated integrals and then for the case where the underlying independent random variables have a
We give the distribution of $M_n$, the maximum of a sequence of $n$ observations from a moving average of order 1. Solutions are first given in terms of repeated integrals and then for the case where the underlying independent random variables are di
Among Monte Carlo techniques, the importance sampling requires fine tuning of a proposal distribution, which is now fluently resolved through iterative schemes. The Adaptive Multiple Importance Sampling (AMIS) of Cornuet et al. (2012) provides a sign
We gather several results on the eigenvalues of the spatial sign covariance matrix of an elliptical distribution. It is shown that the eigenvalues are a one-to-one function of the eigenvalues of the shape matrix and that they are closer together than