ﻻ يوجد ملخص باللغة العربية
We provide a very general argument showing that the Universe must have kept its quantum memories from an epoch much earlier than $60$ e-foldings before the end of inflation. The point is that a generic system of enhanced memory storage capacity exhibits a phenomenon of memory burden. Due to its universal nature this effect must be applicable to de Sitter since the latter has a maximal memory storage capacity thanks to its Gibbons-Hawking entropy. The primordial information pattern encoded in de Sitter memory initially costs very little energy. However, because of Gibbons-Hawking evaporation, the memory burden of the pattern grows in time and increasingly back reacts on the evaporation process. After a finite time the memory burden becomes unbearable and de Sitter quantum breaks. If inflation ended not long before its quantum break-time, the imprints of the primordial memory pattern can be observable. This provides a qualitatively new type of window in the Universes beginning, a sort of cosmic quantum hair.
One of the most important achievements of inflationary cosmology is to predict a departure from scale invariance of the power spectrum for scalar curvature cosmological fluctuations. This tilt is understood as a consequence of a quasi de Sitter class
In this paper, we have worked on the possibility of setting up an Bells inequality violating experiment in the context of primordial cosmology following the fundamental principles of quantum mechanics. To set up this proposal we have introduced a mod
We study the Schwinger effect during inflation and its imprints on the primordial power spectrum and bispectrum. The produced charged particles by Schwinger effect during inflation can leave a unique angular dependence on the primordial spectra.
If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black holes event horizon. We argue that this picture provides a nat